261,652 results match your criteria: "Institute of Materials Science & Technologies[Affiliation]"

The resistivity of the silica SBA-15 type can be significantly improved by forming a thin layer of carbon on the pore surface. This is possible through the carbonization reaction of a surfactant used as a structure-directing agent in the synthesis of mesostructured silica materials. The synthesis of this type of silica-carbon composite (SBA-C) is based on the use of sulfuric acid to create a carbon layer from surfactant molecules encapsulated in silica mesopores.

View Article and Find Full Text PDF

Molecular Dynamics Simulation of the Compatibility Between Supercritical Carbon Dioxide and Coating Resins Assisted by Co-Solvents.

Materials (Basel)

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Institute of Environmental Science, Fudan University, Shanghai 200433, China.

The use of supercritical carbon dioxide (ScCO) as a replacement for volatile organic solvents in coatings has the potential to reduce air pollution. This paper presents the findings of a molecular dynamics simulation study investigating the dissolution behavior of polyvinylidene fluoride (PVDF) in ScCO assisted by five co-solvents. On the basis of solubility parameters, interaction binding energy, and radial distribution functions, the impacts of temperature, pressure, and co-solvents on the compatibility of ScCO and PVDF were investigated at the microscopic level.

View Article and Find Full Text PDF

Study on Properties of Additive Manufacturing Ta10W Alloy Laser-Welded Joints.

Materials (Basel)

December 2024

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 15001, China.

This investigation focuses on Selective Laser Melting (SLM)-fabricated thin-walled Ta10W alloy components. Given the inherent limitations of SLM in producing large-scale, complex components in a single operation, laser welding was investigated as a viable secondary processing method for component integration. The study addresses the critical issue of weldability in additively manufactured tantalum-tungsten alloys, which frequently exhibit internal defects due to process imperfections.

View Article and Find Full Text PDF

Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement.

Materials (Basel)

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.

Alite calcium sulfoaluminate (ACSA) cement is an innovative and environmentally friendly cement compared to ordinary Portland cement (OPC). The synthesis and hydration of ACSA clinkers doped with gradient sulfur were investigated. The clinker compositions and hydrated pastes were characterized by X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) to analyze its mineral contents, hydration products, heat release, pore structure, and microstructure.

View Article and Find Full Text PDF

Carbon-fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were prepared using chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI). The microstructure and flexural properties of C/C-SiC composites after oxidation in different temperature water vapor environments were studied. The results indicate that the difficulty of oxidation in water vapor can be ranked from easy to difficult in the following order: carbon fiber (CF), pyrolytic carbon (PyC), and ceramic phase.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

NbO-type ceramics (where = Mg, Ca, Mn, Co, Ni, Zn and = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity () and high quality factor ( × ). Although ZnTiZrNbO ceramic exhibits impressive microwave dielectric properties, including an of 29.75, a × of 107,303 GHz, and a of -24.

View Article and Find Full Text PDF

The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues as secondary raw materials offers a pathway to economic, environmental, energetic, and social sustainability. In this respect, Al-containing industrial residues from alumina processing (red mud), thermal power plants (fly ash and bottom ash), and metallurgy (slag), as well as other industries, present a valuable mineral resource which can be considered as secondary raw materials (SRMs) with the potential to be used in construction, supporting the concept of circular economy.

View Article and Find Full Text PDF

Based on the background of the continuously rising global demand for clean energy, offshore wind power, as an important form of renewable energy utilization, is booming. However, the pile foundations of offshore wind turbines are subject to long-term erosion in the harsh marine environment, and the problem of corrosion damage is prominent, which seriously threatens the safe and stable operation of the wind power system. In view of this, a meshless numerical simulation method based on smoothed particle hydrodynamics (SPH) and a method for generating the concrete meso-structures are developed.

View Article and Find Full Text PDF

Austenitic stainless steels are used widely in many fields due to their good mechanical properties and high resistance to corrosion. This work focuses on the reconstruction of the passive film after scratching. The purpose of the study was to compare changes in the rate of passive layer reconstruction and to discuss the effect of both the type of material and its electrochemical treatment on the reconstruction of the passive layer for two types of stainless steel: 304 and 316.

View Article and Find Full Text PDF

Boron carbide (BC) is an essential material in various high-performance applications due to its light weight and hardness. In this work, BC-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites' mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles.

View Article and Find Full Text PDF

Diacylglycerol (DAG) is a functional oil but is rarely used in the cosmetic industry because low solubility, susceptibility to leakage and low viscosity to skin are still the main hurdles. A novel diacylglycerol nanostructured lipid carrier hydrogel (GTP-DAG-NLC-GEL) loaded with green tea polyphenol (GTP) was designed and successfully prepared to broaden DAG's application in cosmetics, which significantly improved GTP stability and skin stickiness of DAG. The results showed that DAG-NLC-GEL had good viscosity, which was 980 Pa·s when the shear rate was 5 rpm, and its viscosity decreased quickly with the increase in shear rate, making it easily expand on skin.

View Article and Find Full Text PDF

The Guangyuan kiln, located in the Sichuan Province, Southwest China during the Song Dynasty (960-1279 A.D.), is renowned for its high-temperature iron-series glazed wares, including pure black glazed ware, hare's fur glazed ware, glossy brown glazed ware, and matte brown glazed ware.

View Article and Find Full Text PDF

A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF).

Materials (Basel)

December 2024

Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain.

This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance.

View Article and Find Full Text PDF

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Effect of Styrene Polymerization on the Bondability of Beech and Alder Wood with Different Adhesives.

Materials (Basel)

December 2024

Department of Wood Science and Wood Protection, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776 Warsaw, Poland.

This study aimed to evaluate the bondability of beech and alder wood modified through styrene polymerization within the wood lumen. Unmodified wood samples served as the reference material. Bondability was tested using four adhesive types commonly used in wood technology: polyvinyl acetate (PVAc), urea-formaldehyde (UF), phenol-resorcinol-formaldehyde (PRF), and epoxy resin.

View Article and Find Full Text PDF

The most time-consuming aspect of dental prosthesis installation is the osseointegration of a metal implant with bone tissue. The acceleration of this process may be achieved through the use of extracorporeal shock wave therapy. The objective of this study is to investigate the conditions for osseointegration of the second premolar implant in the mandibular segment through the use of a poroelastic model implemented in the movable cellular automaton method.

View Article and Find Full Text PDF

This study investigated the potential for efficient and resourceful utilization of phosphogypsum (PG) through the preparation of a High-volume Phosphogypsum Cement Stabilized Road Base (HPG-CSSB). The investigation analyzed the unconfined compressive strength (UCS), water stability, strength formation mechanism, microstructure, and pollutant curing mechanism of HPG-CSSB by laser diffraction methods (LD), X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma-mass spectrometry (ICP-MS). The optimal mix ratio of HPG-CSSB was 4% cement, 1% CA2, 35% PG, and 60% graded crushed stone.

View Article and Find Full Text PDF

Mechanical Behavior of 3D-Printed Zig-Zag Honeycomb Structures Made of BASF Ultrafuse 316L.

Materials (Basel)

December 2024

Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), Lorraine University, UMR CNRS 7239, 57078 Metz, France.

The aim of this study is to determine the mechanical behavior of 2D honeycomb cellular structures with deformation initiators subject to quasi-static compression testing. Two different loading directions were studied: in-plane (IP) and out-of-plane (OP). The deformation initiators sought to stabilize the mechanical response by decreasing the initial peak force in the case of OP loading.

View Article and Find Full Text PDF

Dislocation Density in Ceramics Processed by Severe Plastic Deformation via High-Pressure Torsion.

Materials (Basel)

December 2024

Laboratory of Metals and Alloys Under Extreme Impacts, Ufa University of Science and Technology, 32 Zaki Validi str., Ufa 450076, Russia.

This study investigates the dislocation density in ceramics processed by severe plastic deformation at room and elevated temperatures via high-pressure torsion (HPT) for various numbers of turns and shear strains. Ceramics, characterized by ionic or covalent bonding, typically exhibit brittleness due to limited dislocation activity. However, HPT enables significant microstructural transformations in ceramics including dislocation nucleation and accumulation.

View Article and Find Full Text PDF

Composite materials based on diatomite (DT) with the addition of biochar (BC), dolomite (DL), and bentonite (BN) were developed. The effect of chemical modification on the chemical structure of the resulting composites was investigated, and their influence on heavy metal immobilization and the ecotoxicity of post-flotation sediments was evaluated. It was demonstrated that the chemical modifications resulted in notable alterations to the chemical properties of the composites compared to pure DT and mixtures of DT with BC, DL, and BN.

View Article and Find Full Text PDF

Effect of Microsize and Nanosize TiO on Porous Mullite-Alumina Ceramic Prepared by Slip Casting.

Materials (Basel)

December 2024

Institute of Materials and Surface Engineering, Faculty of Natural Science and Technology, Riga Technical University, Paula Valdena st. 3/7, LV-1048 Riga, Latvia.

Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha AlO, and amorphous SiO, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan).

View Article and Find Full Text PDF

The manufacturing precision of electro-hydraulic servo valve sleeves is critical to the performance and longevity of the valves. To ensure the service life of these valves, the valve sleeve is typically made from high-hardness martensitic stainless steel, which is considered a hard-to-cut material. Current honing methods often suffer from inefficiency and instability.

View Article and Find Full Text PDF

Titanium alloy coiled tubing (CT) has great superiority while operating in deep wells with severe conditions, but it faces serious challenges during roll forming like high springback, edge cracking and surface wearing. In order to utilize the high precision and high efficiency production of titanium alloy CT, it is urgently necessary to develop a detailed process design. Based on the W-forming strategy and the cubic curve of the strip edge projection, the flower pattern and roll design for the 21-pass roll forming process were completed.

View Article and Find Full Text PDF

In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (HPO) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.

View Article and Find Full Text PDF