264,442 results match your criteria: "Institute of Materials Science & Engineering[Affiliation]"

Receptor-ligand interactions for optimized endocytosis in targeted therapies.

J Control Release

January 2025

Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes.

View Article and Find Full Text PDF

Norharmane prevents muscle aging via activation of SKN-1/NRF2 stress response pathways.

Redox Biol

January 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea. Electronic address:

Sarcopenia, the age-related decline in muscle mass and function, is a significant contributor to increased frailty and mortality in the elderly. Currently, no FDA-approved treatment exists for sarcopenia. Here, we identified norharmane (NR), a β-carboline alkaloid, as a potential therapeutic agent for mitigating muscle aging.

View Article and Find Full Text PDF

Psychiatric disorders in adolescent and young adult cancer survivors in Korea.

ESMO Open

January 2025

Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Center for Trend Monitoring-Risk Modeling, Samsung Medical Center, Seoul, Republic of Korea; Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Seoul, Republic of Korea. Electronic address:

Background: Although adolescent and young adult (AYA) cancer survivors have an increased risk of psychiatric disorders, limited evidence has been suggested. We aimed to determine the risk of psychiatric disorders among AYA cancer survivors.

Materials And Methods: A retrospective population-based cohort study based on the Korea National Health Insurance Service database was carried out.

View Article and Find Full Text PDF

Mn-doped MOF nanoparticles mitigating hypoxia via in-situ substitution strategy for dual-imaging guided combination treatment of microwave dynamic therapy and chemotherapy.

J Colloid Interface Sci

January 2025

The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:

Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.

View Article and Find Full Text PDF

Resting-state microstate dynamics abnormalities in children with ADHD and co-occurring sleep problems.

Sleep Med

January 2025

Peking University Sixth Hospital, Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China. Electronic address:

Objectives: Children with attention-deficit/hyperactivity disorder often experience sleep problems, exacerbating symptoms, and cognitive deficits. However, the neurophysiological mechanisms underlying such deficits remained unclear. This study aims to use resting-state microstate analysis to investigate the neurophysiological characteristics in children with ADHD and sleep problems and explore whether neurophysiological abnormalities are associated with sleep problems.

View Article and Find Full Text PDF

Interaction of cesium compounds with abundant inorganic compounds of atmosphere: Effect on cloud formation potential and settling.

J Hazard Mater

January 2025

Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.

Experiments were conducted in controlled laboratory conditions to determine the size-resolved CCN (Cloud Condensation Nuclei) activity of sub micrometer-sized aerosols containing nuclear fission products (CsI and CsOH) and abundant ambient inorganic aerosols ammonium sulphates ((NH)SO), ammonium chloride (NHCl), sodium nitrate (NaNO), and sodium chloride (NaCl). The presence of these atmospheric-relevant compounds internally mixed with fission product compounds has the potential to affect the capacity of ambient particulates of aerosols to absorb water and function as CCN. Once in the atmosphere, the dynamics of airborne radionuclides and subsequently their fate gets affected by dry and wet deposition processes.

View Article and Find Full Text PDF

Electrolyte reactivity on electrode surfaces for active species formation and Reactive Red X-3B degradation in electrochemical treatment of dyeing wastewater.

J Environ Manage

January 2025

School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.

The pivotal role of electrolytes such as NaSO and NaCl in electrochemical treatment of dyeing wastewater was investigated by comparing recalcitrant Reactive Red X-3B (RRX-3B) degradation rates, active species formation and intermediates generation in a double-chamber cell. It was found that similar reactive oxygen species (ROS) formed in the anodic chamber are OH and O, in the cathodic chamber is O with different electrolytes, while this is not the case for ROS contribution, RRX-3B degradation kinetic and intermediates. NaCl favored the generation of O, faster decolorization (-N=N- cleavage), and organic intermediates degradation in the anodic chamber.

View Article and Find Full Text PDF

Electromagnetism and thermostability of CrCsynthesised with high-temperature and high-pressure quenching method.

J Phys Condens Matter

January 2025

Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China, Ningbo, Zhejiang, 315211, CHINA.

The interactions between the carbon skeleton and the metal atoms of a binary transition metal carbide (BTMC) are particular interest for industrial applications with openning physics and chemitry questions, especially in magnetoelectric (ME) functional materials and cemented carbides. Chromium and carbon BTMCs are a series of intermetallic compounds with typical chemical formulas and sharepolycrystalline powder c somehromium special characteristics.and carbon as precursors, In this paper,and synthesized s we usedingle-phase bluk Cr7C3 (orthorhombic, with space group: Pnma) with high density and good crystallinity by means of high-temperature and high-pressure quenching method (HTHPQM).

View Article and Find Full Text PDF

Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing.

Biomaterials

January 2025

Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou, 310053, PR China. Electronic address:

Diabetic wounds present significant treatment challenges due to their complex microenvironment, marked by persistent inflammation from bacterial infections, hypoxia caused by diabetic microangiopathy, and biofilm colonization. Sonodynamic therapy (SDT) offers potential for treating such wounds by targeting deep tissues with antibacterial effects, but its efficacy is limited by hypoxic conditions and biofilm barriers. To overcome these obstacles, we developed a novel approach using oxygen-carrying microbubbles loaded with Mn-doped carbon dots (MnCDs@OMBs) to enhance SDT and disrupt biofilms.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas.

View Article and Find Full Text PDF

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Changeover method for biosafety cabinets using ozone gas.

PLoS One

January 2025

Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.

View Article and Find Full Text PDF

QUEST#4X: An Extension of QUEST#4 for Benchmarking Multireference Wave Function Methods.

J Chem Theory Comput

January 2025

Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China.

Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 ( , , 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively.

View Article and Find Full Text PDF

The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions.

View Article and Find Full Text PDF

Background: Final-year students studying in various health science institutes are usually very stressed about their studies so that they can complete their studies without any hurdles. This stress can lead to poor academic and professional results because psychological issues such as anxiety and depression are frequently overlooked and not treated. This study aimed to measure the prevalence of stress and also assess the level of stress symptoms among the final year students of health science institute in Bangladesh.

View Article and Find Full Text PDF

All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Infrared Ion Spectroscopy of Gaseous [Cu(2,2'-Bipyridine)]: Investigation of Jahn-Teller Elongation Versus Compression.

J Phys Chem A

January 2025

Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.

Symmetry breaking is ubiquitous in chemical transformations and affects various physicochemical properties of materials and molecules; Jahn-Teller (JT) distortion of hexa-coordinated transition-metal-ligand complexes falls within this paradigm. An uneven occupancy of degenerate 3d-orbitals forces the complex to adopt an axially elongated or compressed geometry, lowering the symmetry of the system and lifting the degeneracy. Coordination complexes of Cu are known to exhibit axial elongation, while compression is far less common, although this may be due to the lack of rigorous experimental verification.

View Article and Find Full Text PDF