15,342 results match your criteria: "Institute of Materia Medica[Affiliation]"

Breath and Beyond: Advances in Nanomedicine for Oral and Intranasal Aerosol Drug Delivery.

Pharmaceuticals (Basel)

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

Designing and standardizing drug formulations are crucial for ensuring the safety and efficacy of medications. Nanomedicine utilizes nano drug delivery systems and advanced nanodevices to address numerous critical medical challenges. Currently, oral and intranasal aerosol drug delivery (OIADD) is the primary method for treating respiratory diseases worldwide.

View Article and Find Full Text PDF

Chinese scorpion (CS), a traditional animal-based medicine used for over a millennium, has been documented since AD 935-960. It is derived from the scorpion Karsch and is used to treat various ailments such as stroke, epilepsy, rheumatism, and more. Modern research has identified the pharmacological mechanisms behind its traditional uses, with active components like venom and proteins showing analgesic, antitumor, antiepileptic, and antithrombotic effects.

View Article and Find Full Text PDF

Bis-Iridoid Glycosides and Triterpenoids from and Their Potential as Inhibitors of ACC1 and ACL.

Molecules

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.

A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.

View Article and Find Full Text PDF

Vitamin C and MEK Inhibitor PD0325901 Synergistically Promote Oligodendrocytes Generation by Promoting DNA Demethylation.

Molecules

December 2024

State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

DNA methylation and demethylation are key epigenetic events that regulate gene expression and cell fate. DNA demethylation via oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is typically mediated by TET (ten-eleven translocation) enzymes. The 5hmC modification is considered an intermediate state of DNA demethylation; it is particularly prevalent in the brain and is believed to play a role in the development of many cell types in the brain.

View Article and Find Full Text PDF

Utilizing Lactic Acid Bacteria to Improve Hyperlipidemia: A Comprehensive Analysis from Gut Microbiota to Metabolic Pathways.

Foods

December 2024

State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Hyperlipidemia poses significant risks for cardiovascular diseases, with emerging evidence underscoring the critical role of gut microbiota in metabolic regulation. This study explores CAAS36, a probiotic strain with promising cholesterol-lowering capabilities, assessing its impact on hyperlipidemic hamsters. Utilizing 1H NMR-based metabolomics and 16S rRNA gene sequencing, we observed that CAAS36 treatment not only altered metabolic pathways but also reshaped gut microbiota composition.

View Article and Find Full Text PDF

Structure Elucidation and Immunostimulatory Activity Evaluation of a Galactoglucan from Hance.

Foods

December 2024

State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No.1899 Meiling Road, Nanchang 330103, China.

Hance has a medicinal history of thousands of years in treating cough, diabetes, and gastrointestinal system diseases, and it is also a medicine food homology (MFH) plant in China. To evaluate the pharmacological activities of polysaccharides from the rhizomes of , polysaccharides were initially obtained by hot-water extraction and the ethanol precipitation method. A homogenous polysaccharide designated as AOP-w was isolated by a DE-52 column.

View Article and Find Full Text PDF

Identification of Chemical Constituents from Leaves and Stems of : Potential Antioxidant and Tyrosinase Inhibitory Properties.

Antioxidants (Basel)

December 2024

Hainan Key Laboratory of Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Miq. is an important undergrowth species in southern China. The fruits of are recognized as one of "the four famous south medicines" and are also used in the production of preserved fruit.

View Article and Find Full Text PDF

Biofluid-Derived Exosomal LncRNAs: Their Potential in Obesity and Related Comorbidities.

Biology (Basel)

November 2024

Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.

Obesity has escalated into a critical global health crisis, tripling in prevalence since the mid-1970s. This increase mirrors the rise in metabolic-associated diseases such as type 2 diabetes (T2D) and its complications, certain cancers, and cardiovascular conditions. While substantial research efforts have enriched our understanding and led to the development of innovative management strategies for these diseases, the suboptimal response rates of existing therapies remain a major obstacle to effectively managing obesity and its associated conditions.

View Article and Find Full Text PDF

Psoriasis seriously affects the physical and mental health of patients. Rocaglamide (RocA), derived from Aglaia odorata, exhibits potent pharmacological activities. Although its efficacy in psoriasis is unclear, RocA could be a promising therapeutic drug.

View Article and Find Full Text PDF

Discovery of 2(1)-Quinoxalinone Derivatives as Potent and Selective MAT2A Inhibitors for the Treatment of MTAP-Deficient Cancers.

J Med Chem

January 2025

Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

Article Synopsis
  • MAT2A is a promising target for cancer treatment, especially in tumors with MTAP gene deletion, but there are challenges in ensuring the selectivity of MAT2A inhibitors for these specific cancers.
  • Recent research led to the identification of new MAT2A inhibitors with a unique 2(1)-quinoxalinone structure that effectively inhibit MAT2A and selectively target MTAP-deficient cancer cells.
  • One of the novel compounds demonstrated strong pharmacokinetic properties and showed enhanced anticancer effects in models with MTAP-deficient tumors, highlighting potential advancements in drug development for these cancer types.
View Article and Find Full Text PDF

Structure-Guided Development of ClpP Agonists with Potent Therapeutic Activities against Infection.

J Med Chem

January 2025

State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Peritonitis caused by poses a severe threat to patients with end-stage renal failure. Treating multidrug-resistant infections requires the use of antibiotics with diverse mechanisms of action. Caseinolytic protease P (ClpP) is a promising antibacterial target; however, selective activation of (ClpP) over human ClpP (ClpP) remains challenging.

View Article and Find Full Text PDF

In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.

View Article and Find Full Text PDF

Glycosite-specific antibody-drug conjugates (gsADCs), which carry cytotoxic payloads at the conserved -glycosylation site, N297, of an IgG, have emerged as a promising ADC format with better therapeutic index. Conjugating the payloads aldehyde-based chemistry is more friendly to IgGs, and has been widely investigated. However, the efficiency of introducing an aldehyde tag at the N297 site is poor due to the complicated procedures required, such as the multiple-enzyme-catalyzed IgG glycoengineering process and the successive oxidation step, which always results in heterogeneous products and poor stability.

View Article and Find Full Text PDF

Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization.

Acc Chem Res

January 2025

Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.

ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.

View Article and Find Full Text PDF

The tedious synthesis and limited throughput biological evaluation remain a great challenge for discovering new proteolysis targeting chimera (PROTAC). To rapidly identify potential PROTAC lead compounds, we report a platform named Auto-RapTAC. Based on the modular characteristic of the PROTAC molecule, a streamlined workflow that integrates lab automation with "click chemistry" joint building-block libraries was constructed.

View Article and Find Full Text PDF

WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.

View Article and Find Full Text PDF

Enalomics: A Mass Spectrometry-Based Approach for Profiling, Identifying, and Semiquantifying Enals in Biological Samples.

Anal Chem

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.

Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance.

View Article and Find Full Text PDF

Radiopharmaceuticals and their applications in medicine.

Signal Transduct Target Ther

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.

Article Synopsis
  • Radiopharmaceuticals deliver radionuclides to specific lesions, providing targeted diagnosis and treatment for diseases, particularly those resistant to standard therapies.
  • The FDA's approval of agents like [Lu]Lu-DOTA-TATE and [Ga]Ga-PSMA-11 marks significant progress in clinical oncology, enhancing the use of radiotheranostics in personalized medicine.
  • Advancements in radiopharmaceutical development focus on targeting a wider array of diseases, improving therapeutic efficacy, and expanding applications to neurodegenerative and cardiovascular conditions.
View Article and Find Full Text PDF

E3 ligase FBXW7 suppresses brown fat expansion and browning of white fat.

EMBO Rep

January 2025

Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.

Thermogenic fat, including brown and beige fat, dissipates heat via thermogenesis and enhances energy expenditure. Thus, its activation represents a therapeutic strategy to combat obesity. Here, we demonstrate that levels of F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, negatively correlate with thermogenic fat functionality.

View Article and Find Full Text PDF

Curcumin (CUR) is a polyphenolic compound extracted from plants with a wide range of pharmacological activities. However, the low stability and bioavailability limits its practical application. This work utilized the chitosan (CH) and sodium alginate (SA) to modify the surface of the liposome to improve the stability of curcumin.

View Article and Find Full Text PDF

Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.

View Article and Find Full Text PDF

Targeting QPCTL: An Emerging Therapeutic Opportunity.

J Med Chem

January 2025

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Glutaminyl cyclases, including glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like protein (QPCTL), primarily catalyze the cyclization of N-terminal glutamine or glutamate to pyroglutamate (pGlu). QPCTL, in particular, modifies the N-terminus of CD47, thereby regulating its interaction with signal-regulatory protein alpha (SIRPα) and modulating phagocytosis of tumor cells by immune cells. Additionally, QPCTL cyclizes the N-termini of CCL2, CCL7, and CX3CL1, influencing the tumor microenvironment and inflammatory responses in cancer and other disorders.

View Article and Find Full Text PDF

Glycan Sequencing Based on Glycosidase-Assisted Nanopore Sensing.

J Am Chem Soc

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Nanopores are promising sensors for glycan analysis with the accurate identification of complex glycans laying the foundation for nanopore-based sequencing. However, their applicability toward continuous glycan sequencing has not yet been demonstrated. Here, we present a proof-of-concept of glycan sequencing by combining nanopore technology with glycosidase-hydrolyzing reactions.

View Article and Find Full Text PDF

6-Indolo-[2,3-]-quinoxaline derivatives as promising bifunctional SHP1 inhibitors.

Org Biomol Chem

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.

Dysfunction in the SHP1 enzyme can cause cancers and many diseases, so it is of great significance to develop novel small molecule SHP1 inhibitors. Through continuous monitoring of metabolic and targeted processes of SHP1 inhibitors in real-time, we can evaluate the effectiveness and toxicity of the inhibitors, further optimize drug design, and explore SHP1 biology. Indoloquinoxaline is an important class of N-containing heterocycle, which has been studied and applied in the pharmacological field and in optoelectronic materials.

View Article and Find Full Text PDF