50,373 results match your criteria: "Institute of Inorganic Chemistry; JARA-SOFT Researching Soft Matter; and I3TM[Affiliation]"

Evolution of competitive ability and the response to nutrient availability: a resurrection study with the calcareous grassland herb, Leontodon hispidus.

Oecologia

January 2025

Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.

Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.

View Article and Find Full Text PDF

The rational design of engineered nanomaterials (NMs) with improved functionality and their increasing industrial application requires reliable, validated, and ultimately standardized characterization methods for their application-relevant, physicochemical key properties such as size, size distribution, shape, or surface chemistry. This calls for nanoscale (certified) reference materials (CRMs; RMs) and well-characterized reference test materials (RTMs) termed also quality control (QC) samples, assessed, e.g.

View Article and Find Full Text PDF

Finding novel efficient nonlinear optical materials with large second-order nonlinearity for the UV spectral range remains a formidable challenge, especially for silicate systems. Using a high-temperature solid reaction in a tight vacuum environment, two ultraviolet nonlinear optical materials with a moderate second harmonic generation (SHG) response have been created: PbSiOC and PbCaSiO. The SHG values they computed are roughly 2.

View Article and Find Full Text PDF

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Drinking water flavor, a critical water quality metric, exhibits substantial regional variations across China, influenced by local geology and chemistry. Despite growing consumer concerns about water flavor, a spatial assessment of the determinants of water flavor in China has been notably lacking. This study bridges this gap by conducting a spatially comprehensive analysis of 78 tap water samples throughout China.

View Article and Find Full Text PDF

The disposal of waste-printed circuit boards (WPCBs) poses significant environmental and health risks, as they are a major component of e-waste containing hazardous materials. However, WPCBs also contain valuable metallic elements, making them important resources for recycling. To address the dual challenge of hazardous waste management and resource recovery, sustainable approaches for metal extraction from WPCBs are imperative.

View Article and Find Full Text PDF

Pentafluoroorthotellurate Uncovered: Theoretical Perspectives on an Extremely Electronegative Group.

Inorg Chem

January 2025

Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain.

Article Synopsis
  • The pentafluoroorthotellurate group (-OTeF, teflate) is a potent electron-withdrawing substitute for fluoride, known for its stability and size, which helps avoid bridging ligand behavior.
  • This study employs advanced Quantum Chemical Topology methods to analyze the electronic structure and bonding of the teflate group, comparing its electronegativity with halogens and investigating the interactions in various XOTeF systems.
  • Findings reveal that while teflate exhibits strong electron-withdrawing abilities akin to fluorine, its bonding is predominantly ionic and shares similar electronegativity traits with other O-donor groups.
View Article and Find Full Text PDF

Correction for 'The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study' by W. W. Lukens , , 2016, , 11508-11521, https://doi.

View Article and Find Full Text PDF
Article Synopsis
  • Actinide elements like U, Np, and Pu often form actinyl ions (AnO) in their +V and +VI oxidation states, which are significant for understanding environmental behavior and nuclear processes.
  • Research on [AnO(saldien)] complexes shows that their molecular structures share similarities, with some variations caused by actinide contraction, while their redox potentials increase from U to Np and then decrease to Pu, indicating distinct electronic configurations.
  • The study's findings, supported by DFT-based calculations, enhance our understanding of actinide oxidation states, which is crucial for various applications, including nuclear fuel management and advancements in spintronics.
View Article and Find Full Text PDF

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

An isoreticular metal-organic framework (MOF) series was constructed from nickel or cobalt nodes, phosphonate monoester, and bipyridine linkers. The cobalt-containing MOFs were found to catalyze the dehydrogenative C-H borylation of alkenes under mild conditions. This process selectively generates vinyl boronate without the formation of alkyl boronate byproducts and is insensitive to air, enabling large-scale preparation of the target products with isolated yields of over 80%.

View Article and Find Full Text PDF

Luminescence of the CsZrCl under High Pressure.

Inorg Chem

January 2025

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.

The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.

View Article and Find Full Text PDF

A series of -tricarbollides based on 10,11-X-7-MeN--7,8,9-CBH (X = H, Cl, Br, I) and their protonated, i.e. cationic, counterparts, which have an extra H-bridge over the B10-B11 vector in the open pentagonal belt, were prepared.

View Article and Find Full Text PDF

Cationic Modification in Hybrid Iodates: A Pathway to Superior Performance.

Inorg Chem

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The utilization of nonlinear optical (NLO) crystals plays a crucial role in the contemporary laser industry, and the advancement of novel NLO-active units is essential for the exploration of NLO materials. Two novel organic-inorganic hybrid iodates, designated as (CNH)MoO(IO)·3HO () and (CNIH)MoO(IO)·4HO () were synthesized via mild hydrothermal methods, exhibiting band gaps of 3.75 and 3.

View Article and Find Full Text PDF

This paper discusses the origin of emission quenching in yttrium orthovanadate codoped with Eu and Sb ions. Highly crystalline yttrium orthovanadate nanoparticles with chemical composition YEuSbVO ( = 0-5.4 mol %, = 0-2.

View Article and Find Full Text PDF

Structural and magnetic phase transitions in EuLaFe(BO) (x = 0, 0.18).

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.

The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.

View Article and Find Full Text PDF

Efficient Electrosynthesis of Hydrogen Peroxide Enabled by a Hierarchical Hollow RE-P-O (RE = Sm, La, Gd) Architecture with Open Channels.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.

The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.

View Article and Find Full Text PDF

Rare Earth Complex-Based Functional Materials: From Molecular Design and Performance Regulation to Unique Applications.

Acc Chem Res

January 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.

View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF

Structural insights into the mechanism of phosphate recognition and transport by XPR1.

Nat Commun

January 2025

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.

XPR1 is the sole protein known to transport inorganic phosphate (Pi) out of cells, a function conserved across species from yeast to mammals. Human XPR1 variants lead to cerebral calcium-phosphate deposition and primary familial brain calcification (PFBC), a hereditary neurodegenerative disorder. Here, we present the cryo-EM structure of human XPR1 in both its Pi-unbound and various Pi-bound states.

View Article and Find Full Text PDF

Structural and electronic features enabling delocalized charge-carriers in CuSbSe.

Nat Commun

January 2025

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.

Inorganic semiconductors based on heavy pnictogen cations (Sb and Bi) have gained significant attention as potential nontoxic and stable alternatives to lead-halide perovskites for solar cell applications. A limitation of these novel materials, which is being increasingly commonly found, is carrier localization, which substantially reduces mobilities and diffusion lengths. Herein, CuSbSe is investigated and discovered to have delocalized free carriers, as shown through optical pump terahertz probe spectroscopy and temperature-dependent mobility measurements.

View Article and Find Full Text PDF

Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels.

Nat Commun

January 2025

Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.

View Article and Find Full Text PDF