46 results match your criteria: "Institute of Human Genetics IGH[Affiliation]"

Imbalance in the level of the pyrimidine degradation products dihydrouracil and dihydrothymine is associated with cellular transformation and cancer progression. Dihydropyrimidines are degraded by dihydropyrimidinase (DHP), a zinc metalloenzyme that is upregulated in solid tumors but not in the corresponding normal tissues. How dihydropyrimidine metabolites affect cellular phenotypes remains elusive.

View Article and Find Full Text PDF

Evolutionary Divergence of Enzymatic Mechanisms for Tubulin Detyrosination.

Cell Rep

December 2019

Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France. Electronic address:

The two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes.

View Article and Find Full Text PDF

To preserve genome integrity, eukaryotic cells use small RNA-directed mechanisms to repress transposable elements (TEs). Paradoxically, in order to silence TEs, precursors of the small RNAs must be transcribed from TEs. However, it is still poorly understood how these precursors are transcribed from TEs under silenced conditions.

View Article and Find Full Text PDF

The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity.

View Article and Find Full Text PDF

A tumor suppressive DNA translocase named FANCM.

Crit Rev Biochem Mol Biol

February 2019

a Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier , France.

FANCM is named after Fanconi anemia (FA) complement group M. The clinical symptoms of FA include congenital abnormalities, pancytopenia, and cancer proneness. However, recent studies reveal that biallelic inactivation of FANCM does not cause the constellation of FA symptoms, but predisposes patients to cancer and infertility.

View Article and Find Full Text PDF

CSAP Acts as a Regulator of TTLL-Mediated Microtubule Glutamylation.

Cell Rep

December 2018

Institute of Human Genetics (IGH), UMR9002 CNRS-University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090 Montpellier, France. Electronic address:

Tubulin glutamylation is a reversible posttranslational modification that accumulates on stable microtubules (MTs). While abnormally high levels of this modification lead to a number of disorders such as male sterility, retinal degeneration, and neurodegeneration, very little is known about the molecular mechanisms underlying the regulation of glutamylase activity. Here, we found that CSAP forms a complex with TTLL5, and we demonstrate that the two proteins regulate their reciprocal abundance.

View Article and Find Full Text PDF

Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination.

Curr Biol

June 2018

Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France. Electronic address:

Epigenetic inheritance of acquired traits is widespread among eukaryotes, but how and to what extent such information is transgenerationally inherited is still unclear. The patterns of programmed DNA elimination in ciliates are epigenetically and transgenerationally inherited, and it has been proposed that small RNAs, which shuttle between the germline and the soma, regulate this epigenetic inheritance. In this study, we test the existence and role of such small-RNA-mediated communication by epigenetically disturbing the pattern of DNA elimination in Tetrahymena.

View Article and Find Full Text PDF

Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication.

EMBO J

September 2017

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier, France

Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in , partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7.

View Article and Find Full Text PDF

Regulated aggregations of prion and prion-like proteins play physiological roles in various biological processes. However, their structural roles in the nucleus are poorly understood. Here, we show that the prion-like protein Jub6p is involved in the regulation of chromatin structure in the ciliated protozoan Tetrahymena thermophila Jub6p forms sodium dodecyl sulfate (SDS)-resistant aggregates when it is ectopically expressed in vegetative cells and binds to RNA in vitro Jub6p is a heterochromatin component and is important for the formation of heterochromatin bodies during the process of programmed DNA elimination.

View Article and Find Full Text PDF

Genomic Database Searching.

Methods Mol Biol

January 2018

Institute of Human Genetics (IGH), CNRS, 141 rue de la Cardonille, 34396, Montpellier, France.

The availability of reference genome sequences for virtually all species under active research has revolutionized biology. Analyses of genomic variations in many organisms have provided insights into phenotypic traits, evolution and disease, and are transforming medicine. All genomic data from publicly funded projects are freely available in Internet-based databases, for download or searching via genome browsers such as Ensembl, Vega, NCBI's Map Viewer, and the UCSC Genome Browser.

View Article and Find Full Text PDF

DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α.

View Article and Find Full Text PDF

Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation.

View Article and Find Full Text PDF

Understanding epigenetic modifications to chromatin that regulate gene expression and cell-fate decisions is now possible in single cells thanks to recent technological advances. As interdisciplinary approaches are required to derive biological principles, this workshop brought together some of Europe's leading researchers in single-cell epigenetics to share technologies and biological insights.

View Article and Find Full Text PDF

Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking.

View Article and Find Full Text PDF

The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z).

View Article and Find Full Text PDF

TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction.

Nucleic Acids Res

July 2015

Comparative Bioinformatics, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain

This article introduces the Transitive Consistency Score (TCS) web server; a service making it possible to estimate the local reliability of protein multiple sequence alignments (MSAs) using the TCS index. The evaluation can be used to identify the aligned positions most likely to contain structurally analogous residues and also most likely to support an accurate phylogenetic reconstruction. The TCS scoring scheme has been shown to be accurate predictor of structural alignment correctness among commonly used methods.

View Article and Find Full Text PDF

The role of chromosome domains in shaping the functional genome.

Cell

March 2015

Institute of Human Genetics (IGH), 141 rue de la Cardonille, 34396 Montpellier, France. Electronic address:

The genome must be highly compacted to fit within eukaryotic nuclei but must be accessible to the transcriptional machinery to allow appropriate expression of genes in different cell types and throughout developmental pathways. A growing body of work has shown that the genome, analogously to proteins, forms an ordered, hierarchical structure that closely correlates and may even be causally linked with regulation of functions such as transcription. This review describes our current understanding of how these functional genomic "secondary and tertiary structures" form a blueprint for global nuclear architecture and the potential they hold for understanding and manipulating genomic regulation.

View Article and Find Full Text PDF

Chromatin-driven behavior of topologically associating domains.

J Mol Biol

February 2015

Institute of Human Genetics (IGH), UPR 1142, CNRS, 34396 Montpellier, France. Electronic address:

Metazoan genomes are highly organized inside the cell nucleus. Topologically associating domains (TADs) represent the building blocks of genome organization, but their linear modularity does not explain alone their spatial organization. Indeed, the chromatin type adorning a TAD can shape its structure and drives its nuclear positioning and its function.

View Article and Find Full Text PDF

Alignathon: a competitive assessment of whole-genome alignment methods.

Genome Res

December 2014

Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA; Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, California 95064, USA;

Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received.

View Article and Find Full Text PDF