574 results match your criteria: "Institute of Geological Sciences[Affiliation]"

Rationale: The analysis of natural abundance isotopes in biogenic NO molecules provides valuable insights into the nature of their precursors and their role in biogeochemical cycles. However, current methodologies (for example, the isotopocule map approach) face limitations, as they only enable the estimation of combined contributions from multiple processes at once rather than discriminating individual sources. This study aimed to overcome this challenge by developing a novel methodology for the partitioning of NO sources in soil, combining natural abundance isotopes and the use of a N tracer (N Gas Flux method) in parallel incubations.

View Article and Find Full Text PDF

In freshwater lakes and rivers, cyanobacteria belonging to the family Leptolyngbyaceae bore > 1 mm deep into limestone pebbles by dissolving carbonate at the tip of their 3-8 μm-thick filaments. The abundance of these borings decreases downward while it is so high at the rock surface that micrometric debris is formed. Moreover, the disintegrated material on the pebbles' surface can be easily removed, for instance, when pebbles are grinding against each other due to wave or current action or when insect larvae settle and scratch loosened grains from the surface while constructing their cases.

View Article and Find Full Text PDF

Understanding the intricate dynamics of sediment-mediated microbial interactions and their impact on plant tissue preservation is crucial for unraveling the complexities of leaf decay and preservation processes. To elucidate the earliest stages of leaf preservation, a series of decay experiments was carried out for three months on Nymphaea water lily leaves in aquariums with pond water and one of three distinctly different, sterilized, fine-grained substrates-commercially purchased kaolinite clay or fine sand, or natural pond mud. One aquarium contained only pond water as a control.

View Article and Find Full Text PDF

The influence of dispersed ZrO particles on the microstructure evolution and the superconducting properties of a Nb-Ti alloy was investigated. The studied materials were prepared by different methods including mechanical alloying (MA) and arc-melting. The obtained samples were studied by X-ray diffraction (XRD) and vibrating-sample magnetometer (VSM).

View Article and Find Full Text PDF

Strengthening potential of recent peat dating.

J Environ Radioact

December 2024

Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Cracow, Poland.

This study concerned high-resolution age reconstructions of modern organic deposits collected from peatlands distributed in Central Europe. The main focus was on Pb radioisotope as a fundamental geochronometer along with C and Pu radioisotopes used for dating verification. In addition to simple classical models such as CF/CS or CF, the new approach formulated upon the Plum method was implemented.

View Article and Find Full Text PDF

Dianbu River, flowing into the western part of Chaohu Lake, has been heavily polluted, and nitrogen is one of the key factors. During three periods (wet, normal, and dry), 30 surface water samples were collected from the Dianbu River Basin as the research objects. The water chemistry, multiple stable isotopes (N-NO, O-NO, and N-NH), and a SIAR mixing model were analyzed not only to understand the spatio-temporal distribution characteristics of nitrogen and its influencing factors but also the sources of nitrogen.

View Article and Find Full Text PDF

By leveraging the Okada model, the study makes the first-ever attempt to examine earthquake-induced tsunamis in Lake Sevan, related to the activation of underwater segments of the active Pambak-Sevan-Syunik Fault (PSSF), the largest geological structure in the Republic of Armenia (RA). Situated in the Arabian-Eurasian continental collision zone, the basin of Sevan, the largest freshwater lake in the Caucasus region, is characterized by a variety of geological hazards capable of producing events of inter-related triggering. Among other threats, the lake tsunami hazard has remained unexplored.

View Article and Find Full Text PDF

Crustal thickening associated with orogenic growth elevates topography, causing orographic enhancement of precipitation, which in turn facilitates local erosion and possibly intensifies localization of deformation. How these three processes-deformation, precipitation, and erosion-coordinate during orogenic growth remains unknown. Here, we present a numerical model where tectonics, surface processes, and orographic precipitation are tightly coupled, and explore the impact on low, intermediate, and high erodibility orogens.

View Article and Find Full Text PDF

The early radiation of dinosaurs remains a complex and poorly understood evolutionary event. Here we use hundreds of fossils with direct evidence of feeding to compare trophic dynamics across five vertebrate assemblages that record this event in the Triassic-Jurassic succession of the Polish Basin (central Europe). Bromalites, fossil digestive products, increase in size and diversity across the interval, indicating the emergence of larger dinosaur faunas with new feeding patterns.

View Article and Find Full Text PDF

Global economic growth and population expansion contribute to heightened solid waste production, creating environmental challenges. Sustainable waste management, notably incineration, is crucial for volume reduction, energy recovery, and resource utilization. The escalating reliance on waste incineration underlines the critical necessity for detailed waste characterization.

View Article and Find Full Text PDF

Unlabelled: For long time in the history of Earth, ferruginous conditions governed the oceans. With the rise of oxygen during the Proterozoic era and the subsequent evolution of living organisms, worldwide deposition of iron formations occurred. These sedimentary units reveal the transition into oxic oceans, passing by local and transitory euxinic conditions, especially in coastal shelves.

View Article and Find Full Text PDF

Magnetite nanoparticles (MNPs) play an important role in geological and environmental systems because of their redox reactivity and ability to sequester a wide range of metals and metalloids. X-ray absorption spectroscopy conducted at metal and metalloid edges has suggested that the magnetite {111} faces of octahedrally shaped nanoparticles play a dominant role in the redox and sorption processes of these elements. However, studies directly probing the magnetite surfaces, especially in their fully solvated state, are scarce.

View Article and Find Full Text PDF

Automated estimation of offshore polymetallic nodule abundance based on seafloor imagery using deep learning.

Sci Total Environ

December 2024

Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland. Electronic address:

The burgeoning demand for critical metals used in high-tech and green technology industries has turned attention toward the vast resources of polymetallic nodules on the ocean floor. Traditional methods for estimating the abundance of these nodules, such as direct sampling or acoustic imagery are time and labour-intensive or often insufficient for large-scale or accurate assessment. This paper advocates for the automatization of polymetallic nodules detection and abundance estimation using deep learning algorithms applied to seabed photographs.

View Article and Find Full Text PDF

Biofilms are mucilaginous-organic layers produced by microbial activity including viruses. Growing biofilms form microbial mats which enhance sediment stability by binding particles with extracellular polymeric substances and promoting growth through nutrient cycling and organic matter accumulation. They preferentially develop at the sediment-water interface of both marine and non-marine environments, and upon the growing surfaces of modern tufa and travertine.

View Article and Find Full Text PDF

Mixed-cation mixed-halide lead perovskites have been shown to be excellent candidates for solar energy conversion. However, understanding the structural phases of these mixed-ion perovskites across a wide range of operating temperatures, including very low temperatures for space applications, is crucial. In this study, we investigated the structure of formamidinium-based Cs FA Pb(Br I ) using low-temperature in situ synchrotron powder X-ray diffraction.

View Article and Find Full Text PDF

Recurrent landslide events triggered by typhoons and tropical storms over Vietnam pose a longstanding threat to the nation's population and infrastructure. Changes in hydroclimatic conditions, especially the growing intensity and frequency of storms, have elevated landslide susceptibility in many parts of the country. This research examines the spatio-temporal variations in landslide susceptibility across central Vietnam over several years, using multi-temporal landslide inventories from Typhoon Ketsana (2009), Tropical Storm Podul (2013), and Typhoon Molave (2020).

View Article and Find Full Text PDF
Article Synopsis
  • - Landfill operations, particularly Municipal Solid Waste Treatment Plants, are significant sources of greenhouse gases (GHGs) and other air pollutants, necessitating detailed measurements to identify and reduce emissions.
  • - A study conducted in Poland measured atmospheric trace gases near a waste processing facility, finding that methane (CH) concentrations varied significantly with proximity to emission sources and showed seasonal spatial patterns.
  • - The findings indicated that while high levels of CH and other pollutants were detected near active waste zones, their overall impact on surrounding air quality was considered minimal despite the observed variability in concentrations.
View Article and Find Full Text PDF

The sorption properties of zeolites are controlled by several factors, i.e. Si/Al ratio of the aluminosilicate framework [AlSiO], the type and position of the extraframework (EF) cations, and the applied temperature.

View Article and Find Full Text PDF

Ecological risk of Cd and Cr in the black rock series should be noticed: Based on the study of enrichment mechanism, occurrence form in the Lower Cambrian Lujiaping formation.

J Hazard Mater

December 2024

Chongqing Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Carbon cycle and Carbon regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing 401331, China. Electronic address:

The heavy metals in soils developed from the black rock series originate from the parent rock, but their sources and enrichment mechanisms in the parent rock remain unclear. This study explores the enrichment mechanisms, occurrence forms, and ecological environmental effects of cadmium (Cd) and chromium (Cr) in the black rock series. Results revealed average concentrations of 1.

View Article and Find Full Text PDF

Megacity solid waste disposal suitability mapping in Dhaka, Bangladesh: an integrated approach using remote sensing, GIS and statistics.

Environ Monit Assess

September 2024

Geological and Geophysical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43518, Egypt.

Selecting suitable Megacity Solid Waste Disposal (MSWD) sites is a challenging task in densely populated deltas of developing countries, exacerbated by limited public awareness about waste management. One of the major environmental concerns in Dhaka City, the world's densest megacity, is the presence of dumps close to surface water bodies resources. This study employed the Geographic Information System (GIS)-Analytic Hierarchy Process (AHP) framework to integrate geomorphological (slope and flow accumulation), geological (lithological and lineament), hydrogeological (depth to groundwater table and surface waterbody), socioeconomic (Land use land cover, distance to settlement, road, and airport), and climatological (wind direction) determinants, coupled by land-use and hydro-environmental analyses, to map optimal dumps (MSWD sites.

View Article and Find Full Text PDF

Paleoclimate model simulations provide reference data to help interpret the geological record and offer a unique opportunity to evaluate the performance of current models under diverse boundary conditions. Here, we present a dataset of 35 climate model simulations of the warm early Eocene Climatic Optimum (EECO; ~ 50 million years ago) and corresponding preindustrial reference experiments. To streamline the use of the data, we apply standardised naming conventions and quality checks across eight modelling groups that have carried out coordinated simulations as part of the Deep-Time Model Intercomparison Project (DeepMIP).

View Article and Find Full Text PDF

Unlabelled: Relicts of subducted oceanic lithosphere provide key information for the tectonic reconstructions of convergent margins. In the Central Alps, such relicts occur as isolated mafic-ultramafic lenses within the migmatites of the southern Adula nappe and Cima-Lunga unit. Analysis of the major-, minor-, and accessory minerals of these ophiolitic relicts, combined with zircon and rutile U-Pb ages and zircon oxygen isotopes, allows the reconstruction of different stages of their complex evolution.

View Article and Find Full Text PDF

An Enhanced Numerical Calculation Method to Study the Anchorage Performance of Rebars.

Materials (Basel)

August 2024

School of Resources Engineering, Shanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi'an University of Architecture & Technology (XAUAT), Xi'an 710055, China.

When modelling the anchorage performance of rebars with the tri-linear law, the calculation process of the load-deformation relation is complicated. The reason is that when the rebar-grout interface entered the elastic-softening-debonding stage, the softening section length and debonding section length vary simultaneously. To solve this issue, this paper proposes an enhanced numerical calculation method.

View Article and Find Full Text PDF

Biocalcification in porcelaneous foraminifera.

Elife

August 2024

Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.

Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception.

View Article and Find Full Text PDF

The gold content of mafic to felsic potassic magmas.

Nat Commun

August 2024

Institute of Geological Sciences, University of Bern, Bern, 3012, Switzerland.

Many epithermal gold and gold-rich porphyry-type ore deposits are associated with potassic magmas. Hence, potassic magmas are commonly assumed to have been unusually Au-rich or to have contained high Au/Cu ratios. However, these hypotheses remain poorly tested.

View Article and Find Full Text PDF