46 results match your criteria: "Institute of Genetics and Biophysics Adriano Buzzati-Traverso CNR[Affiliation]"

Purpose: Recruitment and activation of inflammatory cells, such as retinal microglia/macrophages, in the subretinal space contribute significantly to the pathogenesis of age-related macular degeneration (AMD). This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV).

Methods: To investigate these roles, we utilized the PlGF-DE knockin (KI) mouse model, which is the full functional knockout (KO) of PlGF.

View Article and Find Full Text PDF

Inflammation plays a crucial role in cancer progression, but the relevance of the inflammasome remains unclear. Alu RNA was the first endogenous nucleic acid shown to activate the NLRP3 (nucleotide-binding domain leucine-rich repeat containing 3) inflammasome. Here, we showed that Alu RNA can induce epithelial-to-mesenchymal transition (EMT) through NLRP3 inflammasome activation and IL-1β release in colorectal cancer (CRC) cells.

View Article and Find Full Text PDF
Article Synopsis
  • X-chromosomal genetic variants can provide important information about differences in human traits and diseases between sexes.
  • A large-scale study analyzed kidney-related traits in nearly 909,000 individuals, finding 23 genetic loci linked to uric acid levels and estimated glomerular filtration rate (eGFR), including four new genes that may play a role in kidney function.
  • The research also discovered five novel sex-specific interactions, with variations showing different effects in males and females, and highlighted genes that are responsive to androgens (male hormones), indicating a complex relationship between sex and kidney-related genetics.
View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their functional roles in cancer hallmarks remain unclear. We employ pooled CRISPR deletion to perturb 831 lncRNAs detected in KRAS-mutant non-small cell lung cancer (NSCLC) and measure their contribution to proliferation, chemoresistance, and migration across two cell backgrounds. Integrative analysis of these data outperforms conventional "dropout" screens in identifying cancer genes while prioritizing disease-relevant lncRNAs with pleiotropic and background-independent roles.

View Article and Find Full Text PDF

Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.

Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches.

View Article and Find Full Text PDF

Background: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci.

View Article and Find Full Text PDF

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids.

Am J Hum Genet

August 2022

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Article Synopsis
  • Researchers studied the genetic connections to blood fats using data from 1.6 million people from different backgrounds to understand why certain fats are higher or lower in the body.
  • They looked at special genes and how they interact in the liver and fat cells, finding that the liver plays a big part in controlling fat levels.
  • Two specific genes, CREBRF and RRBP1, were highlighted as important in understanding how our bodies manage fats due to strong supporting evidence.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic factors contributing to the decline in estimated glomerular filtration rate (eGFR), a key indicator of kidney function, by analyzing data from 62 longitudinal studies involving over 343,000 participants.
  • Twelve significant genetic variants related to eGFR decline were identified, with most showing interaction effects based on age, which highlights how genetic influences on kidney function change as individuals get older.
  • The findings emphasize that individuals with certain genetic profiles face higher risks for kidney failure and acute kidney injury, providing valuable insights that could aid in drug development and strategies for managing kidney health.
View Article and Find Full Text PDF
Article Synopsis
  • Reduced glomerular filtration rate (GFR) is a precursor to kidney failure, influenced by factors like genetics and diabetes (DM), but the interaction between these factors is not well understood.
  • A large-scale genome-wide association study (GWAS) analyzed eGFR across almost 1.5 million individuals, revealing distinct genetic loci that differ between those with and without diabetes.
  • The findings identified potential new targets for drug development aimed at protecting kidney function, highlighting that many drug interventions could be effective for both diabetic and non-diabetic populations.
View Article and Find Full Text PDF

Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences.

Clin Epigenetics

March 2022

Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Background: Imprinting disorders are a group of congenital diseases which are characterized by molecular alterations affecting differentially methylated regions (DMRs). To date, at least twelve imprinting disorders have been defined with overlapping but variable clinical features including growth and metabolic disturbances, cognitive dysfunction, abdominal wall defects and asymmetry. In general, a single specific DMR is affected in an individual with a given imprinting disorder, but there are a growing number of reports on individuals with so-called multilocus imprinting disturbances (MLID), where aberrant imprinting marks (most commonly loss of methylation) occur at multiple DMRs.

View Article and Find Full Text PDF

Nucleolar localization of the ErbB3 receptor as a new target in glioblastoma.

BMC Mol Cell Biol

March 2022

Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.

Background: The nucleolus is a subnuclear, non-membrane bound domain that is the hub of ribosome biogenesis and a critical regulator of cell homeostasis. Rapid growth and division of cells in tumors are correlated with intensive nucleolar metabolism as a response to oncogenic factors overexpression. Several members of the Epidermal Growth Factor Receptor (EGFR) family, have been identified in the nucleus and nucleolus of many cancer cells, but their function in these compartments remains unexplored.

View Article and Find Full Text PDF

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels, heart disease remains the leading cause of death worldwide. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease.

View Article and Find Full Text PDF

Assessment of a New Nanostructured Microemulsion System for Ocular Delivery of Sorafenib to Posterior Segment of the Eye.

Int J Mol Sci

April 2021

Research, Preclinical Development and Patents, SIFI S.p.A., Lavinaio-Aci S. Antonio, 95025 Catania, Italy.

Eye drop formulations allowing topical treatment of retinal pathologies have long been sought as alternatives to intravitreal administration. This study aimed to assess whether a novel nanostructured microemulsions system (NaMESys) could be usefully employed to deliver sorafenib to the retina following topical instillation. NaMESys carrying 0.

View Article and Find Full Text PDF

Prolyl 3-hydroxylase 2 () catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A).

View Article and Find Full Text PDF

The embryonal renal cancer Wilms tumor (WT) accounts for 7% of all children's malignancies. Its most frequent molecular defect is represented by DNA methylation abnormalities at the imprinted 11p15.5 region.

View Article and Find Full Text PDF

The Silver-Russell syndrome (SRS) is a rare disorder characterized by heterogeneous clinical features, including growth retardation, typical facial dysmorphisms, and body asymmetry. Genetic alterations causative of SRS mostly affect imprinted genes located on chromosomes 7 or 11. Hypomethylation of the Imprinting Center 1 (IC1) of the chromosome 11p15.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic factors contributing to the rapid decline in glomerular filtration rate (eGFRcrea), using data from 42 genome-wide association studies to analyze genetic loci linked to this decline.
  • - Two specific definitions of rapid eGFRcrea decline are examined, leading to the identification of seven independent genetic variants associated with this condition, including significant findings near three novel loci.
  • - The research suggests that individuals with a higher genetic risk for kidney function decline are more likely to experience acute kidney injury, indicating that these identified genetic loci could help in developing targeted therapies and identifying at-risk individuals.
View Article and Find Full Text PDF

Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors.

View Article and Find Full Text PDF

HLA class II genes encode highly polymorphic heterodimeric proteins functioning to present antigens to T cells and stimulate a specific immune response. Many HLA genes are strongly associated with autoimmune diseases as they stimulate self-antigen specific CD4 T cells driving pathogenic responses against host tissues or organs. High expression of HLA class II risk genes is associated with autoimmune diseases, influencing the strength of the CD4 T-mediated autoimmune response.

View Article and Find Full Text PDF

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy.

View Article and Find Full Text PDF

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun

September 2019

Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.

Article Synopsis
  • Increased urinary albumin-to-creatinine ratio (UACR) is linked to higher risks of kidney disease and cardiovascular issues, yet the underlying causes are not fully understood.
  • A large meta-analysis identified 68 genetic loci associated with UACR, highlighting connections to conditions like proteinuria, hyperlipidemia, and hypertension.
  • Specific genes (such as TGFB1 and PRKCI) were implicated in kidney function, and experiments showed that disrupting these genes in fruit flies affects albumin processing, suggesting new avenues for research to lower albumin levels.
View Article and Find Full Text PDF

HLA DQA1*05 and DQB1*02 alleles encoding the DQ2.5 molecule and HLA DQA1*03 and DQB1*03 alleles encoding DQ8 molecules are strongly associated with celiac disease (CD) and type 1 diabetes (T1D), two common autoimmune diseases (AD). We previously demonstrated that DQ2.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178).

View Article and Find Full Text PDF

Genomic imprinting disorders: lessons on how genome, epigenome and environment interact.

Nat Rev Genet

April 2019

Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta; Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' CNR, Napoli, Italy.

Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.

View Article and Find Full Text PDF