237 results match your criteria: "Institute of Genetics and Biophysics 'A. Buzzati Traverso[Affiliation]"

FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer.

Int J Mol Sci

May 2023

Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy.

Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by ) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between /FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT.

View Article and Find Full Text PDF

Biotherapeutic soluble proteins that are recombinantly expressed in mammalian cells can pose a challenge when biomanufacturing in three-dimensional (3D) suspension culture systems. Herein, we tested a 3D hydrogel microcarrier for a suspension culture of HEK293 cells overexpressing recombinant Cripto-1 protein. Cripto-1 is an extracellular protein that is involved in developmental processes and has recently been reported to have therapeutic effects in alleviating muscle injury and diseases by regulating muscle regeneration through satellite cell progression toward the myogenic lineage.

View Article and Find Full Text PDF

Background: Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools.

View Article and Find Full Text PDF
Article Synopsis
  • Renal cell carcinoma, bladder cancer, and prostate cancer are the most common genitourinary tumors, and advancements in their diagnosis and treatment have followed a greater understanding of genetic and molecular factors.
  • Non-coding RNAs, like microRNAs and long non-coding RNAs (lncRNAs), play a significant role in the development and progression of these cancers, with interactions influencing cancer characteristics.
  • Research into lncRNAs has revealed new potential biomarkers that could improve diagnostic accuracy and serve as targets for more effective treatment options for genitourinary cancers.
View Article and Find Full Text PDF

Scleractinian corals are colonial animals with a range of life-history strategies, making up diverse species assemblages that define coral reefs. We tagged and tracked ~30 colonies from each of 11 species during seven trips spanning 6 years (2009-2015) to measure their vital rates and competitive interactions on the reef crest at Trimodal Reef, Lizard Island, Australia. Pairs of species were chosen from five growth forms in which one species of the pair was locally rare (R) and the other common (C).

View Article and Find Full Text PDF

Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.

View Article and Find Full Text PDF

Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of "endogenous players", such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.

View Article and Find Full Text PDF

Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile KO mice, a mouse model of Fragile X Syndrome.

View Article and Find Full Text PDF

3D embryonic stem cell (ESC) aggregates self-organize into embryo-like structures named gastruloids that recapitulate the axial organization of post-implantation embryos. Crucial in this process is the symmetry-breaking event that leads to the emergence of asymmetry and spatially ordered structures from homogeneous cell aggregates. Here, we show that budesonide, a glucocorticoid drug widely used to treat asthma, prevents ESC aggregates to break symmetry.

View Article and Find Full Text PDF

Background: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood.

Methods: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Common SNPs may account for 40-50% of human height variation, and this study identifies 12,111 SNPs linked to height from a large sample of 5.4 million individuals.
  • These SNPs cluster in 7,209 genomic segments, encompassing about 21% of the genome and showing varying densities enriched in relevant genes.
  • While these SNPs explain a substantial portion of height variance in European populations (40-45%), their predictive power is lower (10-24%) in other ancestries, suggesting a need for more research to enhance understanding in diverse populations.
View Article and Find Full Text PDF

Dysregulated secretion in neutrophil leukocytes associates with human inflammatory disease. The exocytosis response to triggering stimuli is sequential; gelatinase granules modulate the initiation of the innate immune response, followed by the release of pro-inflammatory azurophilic granules, requiring stronger stimulation. Exocytosis requires actin depolymerization which is actively counteracted under non-stimulatory conditions.

View Article and Find Full Text PDF

The prevalence of Beckwith-Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART-BWSp patients reported so far display imprinting center 2 loss-of-methylations (IC2-LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART-BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART-BWSp patients previously described in literature, and with the general population of children born from ART.

View Article and Find Full Text PDF

The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211.

View Article and Find Full Text PDF

Background: Estimating relatedness is an important step for many genetic study designs. A variety of methods for estimating coefficients of pairwise relatedness from genotype data have been proposed. Both the kinship coefficient [Formula: see text] and the fraternity coefficient [Formula: see text] for all pairs of individuals are of interest.

View Article and Find Full Text PDF
Article Synopsis
  • Successful immunotherapy in cancer relies on T lymphocytes effectively infiltrating tumors and launching an immune response, making biomarkers that track T cell types and numbers highly valuable.
  • Researchers focused on the lncRNA LINC00892, which shows high levels of expression in activated T cells, particularly in a type of lymphoma called follicular lymphoma, suggesting its role in antitumor immunity.
  • Findings indicate that LINC00892 is primarily expressed by memory T cell sub-types and could serve as a promising biomarker for detecting CD4+ memory T cells in both healthy and tumor environments.
View Article and Find Full Text PDF

Chemotherapy is the mainstay for the treatment of non-small cell lung cancer (NSCLC). However, NSCLC cells are either intrinsically chemoresistant or rapidly develop therapy resistance. Cancer stem cells (CSCs) are widely recognized as the cell population responsible for resistance to systemic therapies, but the molecular responses of CSCs to chemotherapeutic agents are largely unknown.

View Article and Find Full Text PDF

Aberrant mitochondrial phenotypes are common to many central nervous system (CNS) disorders, including neurodegenerative and neurodevelopmental diseases. Mitochondrial function and homeostasis depend on proper control of several biological processes such as chromatin remodeling and transcriptional control, post-transcriptional events, vesicle and organelle subcellular trafficking, fusion, and morphogenesis. Mutation or impaired regulation of major players that orchestrate such processes can disrupt cellular and mitochondrial dynamics, contributing to neurological disorders.

View Article and Find Full Text PDF

The different states of mouse pluripotency described so far rely on a combination of molecular, phenotypic, and functional analysis. Embryonic Stem cells (ESCs) aggregated in suspension culture are able to form 3D embryo-like structures called gastruloids that mimic features of the gastrulation process. Recent findings indicate that gastruloid formation efficiency decreases as pluripotency progresses from naïve to primed state, and suggest that gastruloids formation may represent a functional assay to discriminate different states of mouse pluripotency.

View Article and Find Full Text PDF

Different states of pluripotency can be captured in vitro depending on the embryo stage from which they are derived and the culture conditions. Pluripotency is a continuum of different states between the two extremes of naïve embryonic stem cells (ESCs) and primed Epiblast Stem Cells (EpiSCs), which resemble the pre/peri- and post- implantation embryo, respectively. The transition from naïve to primed pluripotency can be induced by growing naïve ESCs in EpiSCs medium, containing bFGF and Activin.

View Article and Find Full Text PDF

Macrophages play an important role in the pathogenesis of celiac disease (CD) because they are involved in both inflammatory reaction and antigen presentation. We analyzed the expression of CD-associated HLA-DQ2.5 risk alleles on macrophages isolated by two cohorts of adult patients, from the U.

View Article and Find Full Text PDF

The epigenome refers to the entirety of DNA methylations, histone modifications, nucleosome occupancy, and coding and non-coding RNAs (and their modifications) in different cell types [...

View Article and Find Full Text PDF

Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); a neural metabotoxin associated with schizophrenia; a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; an epigenetic modifier able to promote DNA and histone hypermethylation; an inducer of proliferation of stem and tumor cells; and a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.

View Article and Find Full Text PDF

Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels.

View Article and Find Full Text PDF

Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 () gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture.

View Article and Find Full Text PDF