324 results match your criteria: "Institute of Genetics and Biophysics "Adriano Buzzati Traverso"-CNR[Affiliation]"

In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling.

View Article and Find Full Text PDF

Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide [...

View Article and Find Full Text PDF

Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material.

View Article and Find Full Text PDF
Article Synopsis
  • Wilson disease (WD) is caused by mutations in the ATP7B gene, leading to copper overload in the liver and brain, which can result in severe health issues.
  • A mutant strain of Caenorhabditis elegans was created to study this condition, showing significant Cu sensitivity, stunted development, and other health impairments due to a specific ATP7B variant.
  • The cua-1 mutant strain serves as a valuable experimental model for understanding copper toxicity in WD and testing potential therapeutic approaches.
View Article and Find Full Text PDF

The infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed.

View Article and Find Full Text PDF

Neuroplasticity is a crucial property of the central nervous system to change its activity in response to intrinsic or extrinsic stimuli. This is mainly achieved through the promotion of changes in the epigenome. One of the epi-drivers priming this process is suberoylanilide hydroxamic acid (SAHA or Vorinostat), a pan-histone deacetylase inhibitor that modulates and promotes neuroplasticity in healthy and disease conditions.

View Article and Find Full Text PDF

Background: Beckwith-Wiedemann syndrome (BWS, OMIM #130,650) is a pediatric overgrowth disorder involving a predisposition to tumor development. Although the clinical management of affected patients is well established, it is less clear how to handle with the cases of siblings of affected patients, since the prevalence of the condition in twins (1:1000) is ten times higher than in singletones (1:10000).

Case Presentation: We report the case of a premature twin patient who during her follow-up develops a clinical phenotype compatible with BWS, genetically confirmed in blood.

View Article and Find Full Text PDF

Tumour mutations in long noncoding RNAs enhance cell fitness.

Nat Commun

June 2023

Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours.

View Article and Find Full Text PDF

Transcriptional Regulation and Its Misregulation in Human Diseases.

Int J Mol Sci

May 2023

Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.

Transcriptional regulation is a critical biological process that allows the cell or an organism to respond to a variety of intra- and extracellular signals, to define cell identity during development, to maintain it throughout its lifetime, and to coordinate cellular activity [...

View Article and Find Full Text PDF

We report three novel deletions involving the Multispecies Conserved Sequences (MCS) R2, also known as the Major Regulative Element (MRE), in patients showing the α-thalassemia phenotype. The three new rearrangements showed peculiar positions of the breakpoints. 1) The (αα)ES is a telomeric 110 kb deletion ending inside the MCS-R3 element.

View Article and Find Full Text PDF

Background: B-raf inhibitors (BRAFi) are effective for BRAF-mutated papillary (PTC) and anaplastic (ATC) thyroid carcinomas, although acquired resistance impairs tumour cells' sensitivity and/or limits drug efficacy. Targeting metabolic vulnerabilities is emerging as powerful approach in cancer.

Methods: In silico analyses identified metabolic gene signatures and Hif-1α as glycolysis regulator in PTC.

View Article and Find Full Text PDF

GIPR expression is induced by thiazolidinediones in a PPARγ-independent manner and repressed by obesogenic stimuli.

Eur J Cell Biol

June 2023

Institute of Genetics and Biophysics ''Adriano Buzzati-Traverso'', CNR, Via P. Castellino 111, 80131 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy. Electronic address:

Adipose tissue (AT) dysfunctions are associated with the onset of insulin resistance (IR) and type 2 diabetes mellitus (T2DM). Targeting glucose-dependent insulinotropic peptide receptor (GIPR) is a valid option to increase the efficacy of glucagon-like peptide 1 (GLP-1) receptor agonists in T2DM treatment. Nevertheless, the therapeutic potential of targeting the GIP/GIPR axis and its effect on the AT are controversial.

View Article and Find Full Text PDF

Co-Occurrence of Beckwith-Wiedemann Syndrome and Early-Onset Colorectal Cancer.

Cancers (Basel)

March 2023

Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.

Article Synopsis
  • CRC is a type of cancer that usually starts in adults and is really common; however, some younger people can get it too, which makes up about 5% of all CRC cases.
  • The study looks at a 27-year-old woman with a condition called BWSp who developed this cancer, and they analyzed her genetic information to find connections.
  • They found changes in her genes that might increase cancer risk and suggested that her inherited genetic mutations, combined with other factors, could help cancer grow faster, but they can't say for sure if BWSp causes CRC.
View Article and Find Full Text PDF

In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3'UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3'UTR in melanoma cells.

View Article and Find Full Text PDF

Editorial: DNA methylation: The aging clock.

Front Cell Dev Biol

March 2023

Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, United States.

View Article and Find Full Text PDF

Paget's disease (PDB) is a late-onset bone remodeling disorder with a broad spectrum of symptoms and complications. One of the most aggressive forms is caused by the P937R mutation in the ZNF687 gene. Although the genetic involvement of ZNF687 in PDB has been extensively studied, the molecular mechanisms underlying this association remain unclear.

View Article and Find Full Text PDF

A crucial challenge in medicine is choosing which drug (or combination) will be the most advantageous for a particular patient. Usually, drug response rates differ substantially, and the reasons for this response unpredictability remain ambiguous. Consequently, it is central to classify features that contribute to the observed drug response variability.

View Article and Find Full Text PDF

Bi-allelic hypomorphic mutations in disrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whether correction can globally overcome DNA methylation defects and related changes in the epigenome.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their functional roles in cancer hallmarks remain unclear. We employ pooled CRISPR deletion to perturb 831 lncRNAs detected in KRAS-mutant non-small cell lung cancer (NSCLC) and measure their contribution to proliferation, chemoresistance, and migration across two cell backgrounds. Integrative analysis of these data outperforms conventional "dropout" screens in identifying cancer genes while prioritizing disease-relevant lncRNAs with pleiotropic and background-independent roles.

View Article and Find Full Text PDF

α-thalassemia is characterized in about 80% of cases by deletions generated by the presence of duplications and interspersed repeated sequences in the α-globin gene cluster. In a project on the molecular basis of α-thalassemia in Southern Italy, we identified six families, showing an absence of the most common deletions, and normal α-globin gene sequences. Multiplex Ligation-dependent Probe Amplification (MLPA), qRT-PCR, and the sequencing of long-range PCR amplicon have been used for the identification and characterization of new deletions.

View Article and Find Full Text PDF