185 results match your criteria: "Institute of Fundamental and Clinical Immunology[Affiliation]"

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

: Adoptive cell therapy is the most promising approach for battling cancer, with T cell receptor-engineered T (TCR-T) cell therapy emerging as the most viable option for treating solid tumors. Current techniques for preparing TCR-T cell therapy provide a limited number of candidates TCRs, missing the comprehensive view of the repertoire, which may hinder the identification of the most effective TCRs. : Dendritic cells were primed with immunogenic peptides of the antigen of interest to expand antigen-specific CD8 T lymphocytes from peripheral blood.

View Article and Find Full Text PDF

The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells.

View Article and Find Full Text PDF

Vitamin D transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines.

View Article and Find Full Text PDF
Article Synopsis
  • Adoptive cell therapy using TCR-engineered T-cells shows promise in targeting tumor cells, especially cancer-testis antigens in solid tumors, despite limited testing in this area compared to blood cancers.
  • The study introduced an innovative protocol for expanding MAGE-A3-specific T-cells and utilized advanced techniques like single-cell multi-omic analysis and lentiviral engineering to enhance T-cell effectiveness.
  • Results indicated a significant increase in MAGE-A3-specific T-cells, identification of a dominant T-cell receptor, and effective cytotoxic activity against MAGE-A3-positive tumors, highlighting the success of their methodology in generating potent anti-tumor T-cells.
View Article and Find Full Text PDF

Molecular mechanisms of regulation of IL-1 and its receptors.

Cytokine Growth Factor Rev

December 2024

Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099,  Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia. Electronic address:

Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels.

View Article and Find Full Text PDF

TCR-T cell therapy represents a promising advancement in adoptive immunotherapy for cancer treatment. Despite its potential, the development and preclinical testing of TCR-T cells face significant challenges. This review provides a structured overview of the key stages in preclinical testing, including in silico, in vitro, and in vivo methods, within the context of the sequential development of novel therapies.

View Article and Find Full Text PDF

Background: Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma (MM) progression. Simultaneously, previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with common γ-chain family cytokines and during homeostatic proliferation. The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets up-regulating PD-1 and TIM-3 checkpoint molecules.

View Article and Find Full Text PDF

Significant strides have been made in identifying tumour-associated antigens over the past decade, revealing unique epitopes crucial for targeted cancer therapy. Among these, the New York esophageal squamous cell carcinoma (NY-ESO-1) protein, a cancer/testis antigen, stands out. This protein is presented on the cell surface by major histocompatibility complex class I molecules and exhibits restricted expression in germline cells and various cancers, marking it as an immune-privileged site.

View Article and Find Full Text PDF

The role of Erythroid cells in immune regulation and immunosuppression is one of the emerging topics in modern immunology that still requires further clarification as Erythroid cells from different tissues and different species express different immunoregulatory molecules. In this study, we performed a thorough investigation of human bone marrow Erythroid cells from adult healthy donors and adult acute lymphoblastic leukemia patients using the state-of-the-art single-cell targeted proteomics and transcriptomics via BD Rhapsody and cancer-related gene copy number variation analysis via NanoString Sprint Profiler. We found that human bone marrow Erythroid cells express the , and (VISTA) immunosuppressive genes, , and cytokine genes, as well as the genes involved in antimicrobial immunity and MHC Class II antigen presentation.

View Article and Find Full Text PDF

Hemorrhage, a condition that accompanies most physical trauma cases, remains an important field of study, a field that has been extensively studied in the immunological context for myeloid and lymphoid cells, but not as much for erythroid cells. In this study, we studied the immunological response of murine erythroid cells to acute blood loss using flow cytometry, NanoString immune transcriptome profiling, and BioPlex cytokine secretome profiling. We observed that acute blood loss forces the differentiation of murine erythroid cells in both bone marrow and spleen and that there was an up-regulation of several immune response genes, in particular pathogen-associated molecular pattern sensing gene Clec5a in post-acute blood loss murine bone marrow erythroid cells.

View Article and Find Full Text PDF
Article Synopsis
  • Netakimab has shown effective results in controlled trials for treating ankylosing spondylitis (AS), and this study investigates its efficacy and safety in everyday clinical settings over a year.
  • The observational study included 137 patients from 23 centers in Russia, focusing on retention rates and the impact of netakimab therapy at multiple time points during the year.
  • Findings revealed that 90.4% of patients continued treatment after one year, and significant improvements were observed in disease activity scores, with only a small percentage experiencing adverse effects.
View Article and Find Full Text PDF

Introduction: Restoring immune tolerance is a promising area of therapy for autoimmune diseases. One method that helps restore immunological tolerance is the approach using tolerogenic dendritic cells (tolDCs). In our study, we analyzed the effectiveness of using dendritic cells transfected with DNA constructs encoding IL-10, type II collagen, and CCR9 to induce immune tolerance in an experimental model of arthritis.

View Article and Find Full Text PDF

T-cell immunoglobulin and mucin domain 3 (TIM-3) belongs to the group of inhibitory checkpoint receptors and has traditionally been of interest in terms of its expression on activated CD4 and CD8 T cells. The treatment with TIM-3 inhibitors is considered as a promising strategy in cancer immunotherapy. The review focuses on new data on the expression of TIM-3 on dendritic cells (DCs) that play a key role in initiating the antigen-specific immune response and inducing effector CD8 T cells.

View Article and Find Full Text PDF

Erythroid cells, serving as progenitors and precursors to erythrocytes responsible for oxygen transport, were shown to exhibit an immunosuppressive and immunoregulatory phenotype. Previous investigations from our research group have revealed an antimicrobial gene expression profile within murine bone marrow erythroid cells which suggested a role for erythroid cells in innate immunity. In the present study, we focused on elucidating the characteristics of human bone marrow erythroid cells through comprehensive analyses, including NanoString gene expression profiling utilizing the Immune Response V2 panel, a BioPlex examination of chemokine and TGF-beta family proteins secretion, and analysis of publicly available single-cell RNA-seq data.

View Article and Find Full Text PDF

Unlabelled: The COVID-19 pandemic has significantly changed the understanding of the safety profile of therapies for immunoinflammatory rheumatic diseases (IRDs). This is primarily due to the negative impact of a number of basic disease-modifying antirheumatic drugs (DMARDs) and genetically engineered biological drugs (biological DMARDs, or biologics) on the course and outcomes of a new coronavirus infection. A number of studies have shown that anti-B-cell therapy (rituximab) gave a statistically significant increase in the risk of severe COVID-19 and an increase in mortality.

View Article and Find Full Text PDF

: The intranasal delivery of various neurotropic substances is considered a new attractive therapeutic approach for treating neuropathologies associated with neuroinflammation and altered regeneration. Specific language impairment (SLI) that arises as a result of damage to the cortical speech zones during the developmental period is one of the most common problems in preschool children, and it is characterized by persistent difficulties in the acquisition, understanding, and use of language. This study's objective is to evaluate the efficacy and safety of intranasal immunotherapy using the M2 macrophage secretome as a rich source of immunoregulatory and neurotrophic factors for the treatment of severe language impairment in children.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers aimed to develop a cellular model to study the effects of tumor necrosis factor (TNF) depending on the presence or absence of TNFR1 and TNFR2 receptors in cell lines.
  • They created TNFR1 knockout versions of ZR-75/1 and K-562 cell lines to analyze how this absence affects receptor distribution, cell cycle, cell death, and gene expression in response to TNF.
  • Findings showed that removing TNFR1 led to changes in TNFR2 distribution, influencing sensitivity to TNF and altering cell proliferation and death patterns in different ways across the two cell lines.
View Article and Find Full Text PDF

Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis.

View Article and Find Full Text PDF

Immunotherapy using dendritic cell-based vaccination is a natural approach using the capabilities and functions inherent in the patient's immune system to eliminate tumor cells. The development of dendritic cell-based cell technologies evolved as the disorders of dendritic cell differentiation and function in cancer were studied; some of these functions are antigen presentation, priming of cytotoxic T-lymphocytes and induction of antigen-specific immune responses. At the initial stage of technology development, it was necessary to develop protocols for the in vitro generation of functionally mature dendritic cells that were capable of capturing tumor antigens and processing and presenting them in complex with MHC to T-lymphocytes.

View Article and Find Full Text PDF

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF).

View Article and Find Full Text PDF

Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell.

View Article and Find Full Text PDF

Recent studies demonstrated that myeloid-derived suppressor cells (MDSCs) are involved in the pathogenesis and progression of multiple myeloma (MM). Nevertheless, data on the quantitative and functional changes in MDSCs during standard MM treatment remain poorly understood. Here, we determined that monocytic MDSCs (M-MDSC; CD14HLA-DR) and granulocytic MDSCs (PMN-MDSC; LinHLA-DRCD33CD66b) in MM patients in remission following induction therapy (IT) were significantly increased, while early MDSCs (E-MDSCs; LinHLA-DRCD33CD66b) were decreased compared to the donor group.

View Article and Find Full Text PDF

Cucurbiturils are a family of macrocyclic oligomers capable of forming host-guest complexes with various molecules. Due to noncovalent binding to drug molecules and low toxicity, cucurbiturils has been extensively investigated as potential carriers for drug delivery. However, the immune system's interactions with different drug carriers, including cucurbiturils, are still under investigation.

View Article and Find Full Text PDF