322 results match your criteria: "Institute of Functional and Applied Anatomy[Affiliation]"

Although left ventricular assist devices (LVADs) are an alternative to heart transplantation, their artificial surfaces often lead to serious thrombotic complications requiring high-risk device replacement. Coating blood-contacting surfaces with antithrombogenic endothelial cells is considered an effective strategy for preventing thrombus formation. However, this concept has not yet been successfully implemented in LVADs, as severe cell loss is to be expected, especially on the impeller surface with high prothrombogenic supraphysiological shear stress.

View Article and Find Full Text PDF

The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels.

View Article and Find Full Text PDF

Hypertrophic Cardiomyopathy (HCM) is often caused by heterozygous mutations in β-myosin heavy chain (MYH7, β-MyHC). In addition to hyper- or hypocontractile effects of HCM-mutations, heterogeneity in contractile function (contractile imbalance) among individual cardiomyocytes was observed in end-stage HCM-myocardium. Contractile imbalance might be induced by burst-like transcription, leading to unequal fractions of mutant versus wildtype mRNA and protein in individual cardiomyocytes (allelic imbalance).

View Article and Find Full Text PDF

Alveolar epithelial type II cells (AEII) synthesize, store, and recycle surfactant. Lipids and primarily hydrophobic surfactant proteins (SPs) are stored in lamellar bodies (Lbs) while the hydrophilic SPs and the precursors of hydrophobic SPs are stored in multivesicular bodies (mvb). ErbB4-receptor and its ligand neuregulin (NRG) are important regulators of fetal lung development and fetal surfactant synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers differentiated induced pluripotent stem cells from both a CF patient and a healthy donor into macrophages to study the effects of CFTR deficiency on macrophage function.
  • * The study found that CF macrophages (iMac) had reduced ability to kill bacteria, altered cellular environment, and exhibited signs of inflammation and dysfunctional responses, indicating an impaired immune response in CF.
View Article and Find Full Text PDF

Identification of Biochemical Determinants for Diagnosis and Prediction of Severity in 5q Spinal Muscular Atrophy Using H-Nuclear Magnetic Resonance Metabolic Profiling in Patient-Derived Biofluids.

Int J Mol Sci

November 2024

Division of Child Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Medical Faculty Heidelberg, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.

This study explores the potential of H-NMR spectroscopy-based metabolic profiling in various biofluids as a diagnostic and predictive modality to assess disease severity in individuals with 5q spinal muscular atrophy. A total of 213 biosamples (urine, plasma, and CSF) from 153 treatment-naïve patients with SMA across five German centers were analyzed using H-NMR spectroscopy. Prediction models were developed using machine learning algorithms which enabled the patients with SMA to be grouped according to disease severity.

View Article and Find Full Text PDF

Alveolar epithelial type I (AE1) cells with their wide spatial expansion form approximately 95% of the outer surface area of the air-blood barrier inside the lung. Serial block-face scanning electron microscopy (SBF-SEM) investigations led to the hypothesis that AE1 cell mitochondria are preferentially distributed as aggregates in those parts of AE1 cells that are located above connective tissue pillars between capillaries, thus not increasing the thickness of the diffusion distance for oxygen and carbon dioxide. Furthermore, it was hypothesised that postnatal development requires adapting the amount and distribution of mitochondria in AE1 cells.

View Article and Find Full Text PDF

Pulmonary surfactant is produced by type II alveolar epithelial cells (AEC2) and stored in lamellar bodies (LBs) before secretion. Here, we characterize AEC2 and their LBs in the human lung ultrastructurally and quantitatively. Five human lungs were analyzed by transmission electron microscopy, serial section electron tomography, and stereology.

View Article and Find Full Text PDF

Morphological and molecular aspects of lung development.

Histol Histopathol

September 2024

Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.

Healthy breathing relies on normal morphological and functional development of the lung. This includes different prenatal and postnatal developmental stages. Depending on species and postnatal behavior as nest escapers or nest squatters, the duration of individual developmental phases and the state of differentiation of the lungs at birth differ.

View Article and Find Full Text PDF

Background: A comprehensive understanding of vascular development in the human lung is still missing.

Methods: Therefore, samples of infant (n = 5, 26 days to 18 months postnatally) and adult (n = 5, 20 to 40 years) human lungs were subjected to unbiased stereological estimation of the total number of capillary loops. Serial sections were segmented to visualize the alveolar capillary network (ACN) in 3D.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons.

View Article and Find Full Text PDF

Endothelial derived, secreted long non-coding RNAs and aggravate cardiac remodeling.

Mol Ther Nucleic Acids

September 2024

ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany.

Article Synopsis
  • Pathological cardiac remodeling can lead to heart failure, and the study focused on two long non-coding RNAs (lncRNAs) that are upregulated in failing hearts.
  • Overexpressing these lncRNAs in mice worsened heart dysfunction and increased hypertrophy and fibrosis in response to pressure overload.
  • Knocking out these lncRNAs reduced heart damage and improved blood vessel growth but also led to sudden death in some mice, highlighting their complex role in heart failure and potential as therapeutic targets.
View Article and Find Full Text PDF

The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase which specifically localizes in zones of cell wall biosynthesis in .

View Article and Find Full Text PDF

The mortality associated with acute lung injury (ALI) increases with age. Alveolar epithelial type II (AEII) cells are the progenitor cells of the alveolar epithelium and are crucial for repair after injury. We hypothesize that telomere dysfunction-mediated AEII cell senescence impairs regeneration and promotes the development of ALI.

View Article and Find Full Text PDF

Assessment of lung function is an important clinical tool for the diagnosis and monitoring of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In mice, lung function maneuvers use algorithm-based ventilation strategies including forced oscillation technique (FOT), negative pressure-driven forced expiratory (NPFE) and pressure-volume (PV) maneuvers via the FlexiVent system. This lung function test (LFT) is usually performed as end-point measurement only, requiring several mice for each time point to be analyzed.

View Article and Find Full Text PDF

Stereology, the gold standard of lung morphometry, critically depends on sampling of tissue for analysis. Random sampling approaches guarantee each part of the organ an equal chance of being included in the analysis, hence they guarantee a representative sample of the whole. However, when biological or pathological structures of interest are rare and/or heterogeneously distributed over the whole lung, the random sampling approach can be inefficient or even result in meaningless data.

View Article and Find Full Text PDF

The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Quantitative analysis of lung structures through histological sections is crucial for understanding how lung function relates to its structure, but most studies fix lungs at non-physiological pressures, losing important data.
  • This article advocates for using fixation at functional transpulmonary pressures—specifically end-inspiration and end-expiration—to gain insights that are more relevant to real-life lung function.
  • It reviews typical fixation pressures in preclinical studies, highlights conditions that would benefit from this approach, summarizes fixation methods and imaging alternatives, and discusses the challenges of implementing these changes in research practice.
View Article and Find Full Text PDF

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation.

View Article and Find Full Text PDF

Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas.

View Article and Find Full Text PDF

Impact of different tissue dissociation protocols on endothelial cell recovery from developing mouse lungs.

Cytometry A

July 2024

Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg (TLRC), Heidelberg University Hospital, member of the German Center for Lung Research (DZL), Heidelberg, Germany.

Flow cytometry and fluorescence-activated cell sorting are widely used to study endothelial cells, for which the generation of viable single-cell suspensions is an essential first step. Two enzymatic approaches, collagenase A and dispase, are widely employed for endothelial cell isolation. In this study, the utility of both enzymatic approaches, alone and in combination, for endothelial cell isolation from juvenile and adult mouse lungs was assessed, considering the number, viability, and subtype composition of recovered endothelial cell pools.

View Article and Find Full Text PDF

Mutations in Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability.

View Article and Find Full Text PDF

Hypoxic perfusion of pulmonary arterial vasa vasorum increases pulmonary arterial pressure.

Am J Physiol Lung Cell Mol Physiol

July 2024

Hannover Medical School, Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover, Germany.

The pathophysiology of pulmonary hypertension (PH) is not fully understood. Here, we tested the hypothesis that hypoxic perfusion of the vasa vasorum of the pulmonary arterial (PA) wall causes PH. Young adult pig lungs were explanted and placed into a modified ex vivo lung perfusion unit (organ care system, OCS) allowing the separate adjustment of parameters for mechanical ventilation, as well as PA perfusion and bronchial arterial (BA) perfusion.

View Article and Find Full Text PDF

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension.

View Article and Find Full Text PDF

Objective: Surfactant-specific proteins (SP) are responsible for the functional and structural integrity as well as for the stabilization of the intra-alveolar surfactant. Morphological lung maturation starts in rat lungs after birth. The aim of this study was to investigate whether the expression of the hydrophilic SP-A and the hydrophobic SP-B is associated with characteristic postnatal changes characterizing morphological lung maturation.

View Article and Find Full Text PDF