107 results match your criteria: "Institute of Functional Epigenetics[Affiliation]"

Cells can measure shallow gradients of external signals to initiate and accomplish a migration or a morphogenetic process. Recently, starting from mathematical models like the local-excitation global-inhibition (LEGI) model and with the support of empirical evidence, it has been proposed that cellular communication improves the measurement of an external gradient. However, the mathematical models that have been used have over-simplified geometries (e.

View Article and Find Full Text PDF

Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state.

View Article and Find Full Text PDF
Article Synopsis
  • Gastrulation is a crucial process in multicellular animals that establishes the body plan and cellular diversity, occurring in humans around the third week after fertilization.
  • The study focuses on analyzing the single-cell transcriptional profiles of a human embryo during gastrulation, specifically between 16 and 19 days after fertilization.
  • Findings reveal various cell types, including pluripotent epiblast and primordial germ cells, providing insights that enhance understanding of embryonic development and aid research on human cell differentiation.
View Article and Find Full Text PDF

Biosynthesis scales with cell size such that protein concentrations generally remain constant as cells grow. As an exception, synthesis of the cell-cycle inhibitor Whi5 "sub-scales" with cell size so that its concentration is lower in larger cells to promote cell-cycle entry. Here, we find that transcriptional control uncouples Whi5 synthesis from cell size, and we identify histones as the major class of sub-scaling transcripts besides WHI5 by screening for similar genes.

View Article and Find Full Text PDF
Article Synopsis
  • Cell competition is a process that helps get rid of weak or unhealthy cells in the body, especially during early development in mice.
  • Researchers found that cells with problems in their mitochondria (which help produce energy) are the ones mostly eliminated during this process.
  • They discovered that even small changes in mitochondrial DNA can cause these cells to be removed, making sure that the stronger, healthier cells stay to support proper development.
View Article and Find Full Text PDF

Biochemical reactions typically depend on the concentrations of the molecules involved, and cell survival therefore critically depends on the concentration of proteins. To maintain constant protein concentrations during cell growth, global mRNA and protein synthesis rates are tightly linked to cell volume. While such regulation is appropriate for most proteins, certain cellular structures do not scale with cell volume.

View Article and Find Full Text PDF

We present a nanomechanical platform for real-time quantitative label-free detection of target biomolecules in a liquid environment with mass sensitivity down to few pg. Newly fabricated arrays of up to 18 cantilevers are integrated in a micromachined fluidic chamber, connected to software-controlled fluidic pumps for automated sample injections. We discuss two functionalization approaches to independently sensitize the interface of different cantilevers.

View Article and Find Full Text PDF

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells.

View Article and Find Full Text PDF

In eukaryotic cells, DNA is tightly packed with the help of histone proteins into chromatin. Chromatin architecture can be modified by various post-translational modifications of histone proteins. For almost 60 years now, studies on histone lysine acetylation have unraveled the contribution of this acylation to an open chromatin state with increased DNA accessibility, permissive for gene expression.

View Article and Find Full Text PDF

Totipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication.

Mol Cell

July 2021

The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. Electronic address:

DNA replication initiates at genomic locations known as origins of replication, which, in S. cerevisiae, share a common DNA consensus motif. Despite being virtually nucleosome-free, origins of replication are greatly influenced by the surrounding chromatin state.

View Article and Find Full Text PDF

Nowadays droplet microfluidics is widely used to perform high throughput assays and for the synthesis of micro- and nanoparticles. These applications usually require packaging several reagents into droplets and their mixing to start a biochemical reaction. For rapid mixing microfluidic devices usually require additional functional elements that make their designs more complex.

View Article and Find Full Text PDF

Histone post-translational modifications (PTMs) are key players in chromatin regulation. The identification of novel histone acylations raises important questions regarding their role in transcription. In this study, we characterize the role of an acylation on the lateral surface of the histone octamer, H3K122 succinylation (H3K122succ), in chromatin function and transcription.

View Article and Find Full Text PDF

Nanotechnological immunoassay for rapid label-free analysis of candidate malaria vaccines.

Nanoscale

February 2021

Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland.

Malaria is a life-threatening epidemic disease with half of the world's population at risk. Although its incidence rate has fallen since 2010, this ratio dramatically stalled between 2014 and 2018. New fast and optimized tools in vaccine analysis and seroconversion testing are critically needed.

View Article and Find Full Text PDF
Article Synopsis
  • The study maps the embryonic origins of the mammalian heart, using single-cell analysis to better understand how different cardiac cell types develop.
  • It identifies a new pool of cardiac progenitor cells that are distinct from known types, which contribute not only to heart muscle cells but also to the epicardium, important for heart development and repair.
  • The findings have implications for developing cell-based therapies aimed at regenerating heart tissue.
View Article and Find Full Text PDF

The budding yeast is an excellent model organism to dissect the maintenance and inheritance of phenotypes due to its asymmetric division. This requires following individual cells over time as they go through divisions to define pedigrees. Here, we provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells.

View Article and Find Full Text PDF

DNA methylation is essential to development and cellular physiology in mammals. Faulty DNA methylation is frequently observed in human diseases like cancer and neurological disorders. Molecularly, this epigenetic mark is linked to other chromatin modifications and it regulates key genomic processes, including transcription and splicing.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that certain changes to RNA called methylation are very important for how RNA works and can be linked to diseases like cancer.
  • They tested 78 proteins to see which ones help liver cancer cells grow and discovered that a protein called METTL6 is really important for this.
  • METTL6 helps a special type of RNA called tRNA work better, and if it doesn't work right, it can affect how stem cells and cancer cells grow and use energy.
View Article and Find Full Text PDF

This commentary outlines challenges with identifying and implementing ethical, legal and societal considerations when initiating large-scale scientific programs and suggests best practices to ensure responsible research.

View Article and Find Full Text PDF

Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation.

View Article and Find Full Text PDF

Transcriptional reinduction memory is a phenomenon whereby cells "remember" their transcriptional response to a previous stimulus such that subsequent encounters with the same stimulus can result in altered gene expression kinetics. Chromatin structure is thought to play a role in certain transcriptional memory mechanisms, leading to questions as to whether and how memory can be actively maintained and inherited to progeny through cell division. Here we summarize efforts towards dissecting chromatin-based transcriptional memory inheritance of GAL genes in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis.

Nat Commun

July 2020

Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany.

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration.

View Article and Find Full Text PDF

The formation and maintenance of subcellular structures and organelles with a well-defined size is a key requirement for cell function, yet our understanding of the underlying size control mechanisms is limited. While budding yeast cell polarization and subsequent assembly of a septin ring at the site of bud formation has been successfully used as a model for biological self-assembly processes, the mechanisms that set the size of the septin ring at the bud neck are unknown. Here, we use live-cell imaging and genetic manipulation of cell volume to show that the septin ring diameter increases with cell volume.

View Article and Find Full Text PDF

Objective: Fasting regimens can promote health, mitigate chronic immunological disorders, and improve age-related pathophysiological parameters in animals and humans. Several ongoing clinical trials are using fasting as a potential therapy for various conditions. Fasting alters metabolism by acting as a reset for energy homeostasis, but the molecular mechanisms underlying the beneficial effects of short-term fasting (STF) are not well understood, particularly at the systems or multiorgan level.

View Article and Find Full Text PDF