A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2qbcnoc9bj95b4gcegq26g8vmg1sclv0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Institute of Experimental Physics[Affil... Publications | LitMetric

2,347 results match your criteria: "Institute of Experimental Physics[Affiliation]"

Laser-Induced Graphene (LIG) is a 3D, conductive, porous material with a high surface area, produced by laser irradiation of synthetic polymers with high thermal stability. Recently, the focus has shifted toward sustainable bioderived and biodegradable precursors, such as lignocellulosic materials. Despite starch being an abundant and cost-effective biopolymer, direct laser scribing on starch-derived precursors has not yet been explored.

View Article and Find Full Text PDF

On the production of singlet oxygen by the isoalloxazine ring in free and protein-bound flavin cofactors.

Biophys Chem

January 2025

Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia. Electronic address:

Flavin cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), as a part of flavoenzymes play a critical role in the catalysis of multiple reactions predominantly of a redox nature. Question arises why nature developed two very similar cofactors with an identical functional part - isoalloxazine ring. We believe that an answer is related to the fact that the isoalloxazine ring belongs to endogenous photosensitizers able to produce reactive and potentially harmful singlet oxygen, O, with high efficiency, Φ ∼ 0.

View Article and Find Full Text PDF

Adsorption, Adhesion, and Wettability of Commercially Available Cleansers at Dental Polymer (PMMA) Surfaces.

Materials (Basel)

September 2024

Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.

This study aims to evaluate the adsorptive, adhesive, and wetting energetic properties of five commercially available cleansers in contact with model dental polymer (PMMA). It was assumed that the selected parameters allow for determining the optimal concentration and place of key component accumulation for antibacterial activity in the bulk liquid phase and prevention of oral plaque formation at the prosthetic material surface. The adsorptive (Gibbs' excesses , critical micellar concentration) and thermal (entropy and enthalpy) surface characteristics originated from surface tension and dependences.

View Article and Find Full Text PDF

Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N-etheno-2-aminopurine (1,N-ε2APu, ) and N,3-etheno-2-aminopurine (N,3-ε2APu, ). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy.

View Article and Find Full Text PDF

Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides.

Plant Pathol J

October 2024

Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China.

Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.

View Article and Find Full Text PDF

Distinct types of luminescence that are activated by various stimuli in a single material offer exciting developmental opportunities for functional materials. A versatile sensing platform that exhibits photoluminescence (PL), persistent luminescence (PersL), and mechanoluminescence (ML) is introduced, which enables the sensitive detection of temperature, pressure, and force/stress. The developed SrMgSiO:Eu/Dy material exhibits a linear relationship between ML intensity and force and can be used as an ML stress sensor.

View Article and Find Full Text PDF

Mechanical alloying allows obtaining nonequilibrium structures in various systems, often possessing unique properties, including magnetic ones. Considering the unusual structural features of the magnetostrictive Fe-Ga alloy, this approach may be promising for this system. In this work, extensive experimental studies were carried out aimed at studying the features of mechanical alloying of Fe-Ga.

View Article and Find Full Text PDF

Evaluation of relevant seed traits is an essential part of most plant breeding and biotechnology programs. There is need for non-destructive, three-dimensional assessment of the morphometry, composition, and internal features of seeds. Here, we introduced a novel tool, MRI-Seed-Wizard, which integrates deep learning algorithms with non-invasive magnetic resonance imaging (MRI) for its use in the new domain - plant MRI.

View Article and Find Full Text PDF

Appropriately modified thermoresponsive hydrogels, such as poly(-isopropylacrylamide) hydrogels, bring an opportunity for a variety of biomedical applications. Incorporating compounds with different properties into poly(-isopropylacrylamide) hydrogels offers opportunities to enhance their mechanical, self-healing ability, adhesiveness, thermal responsiveness, and drug release capabilities. In this study, we investigated the influence of Au-sulfur interactions on the properties of the poly(-isopropylacrylamide) hydrogels after introducing -bis(acryloyl)cystine (a newly synthesized cross-linker), modified gold nanoparticles, and a p(NIPAm-BISS) nanogel into the hydrogel matrix.

View Article and Find Full Text PDF
Article Synopsis
  • ZrTe is a potential topological insulator (TI), yet its topological phase and relationship to its Dirac semimetallic state remain debated in the scientific community.
  • Researchers used a semiclassical multicarrier transport (MCT) model to study the magnetotransport of ZrTe nanodevices under high pressure, up to 2 GPa, revealing important temperature-dependent behavior.
  • Their findings support the idea that the band gap closes and reopens with increasing pressure, indicating a phase transition from weak to strong TI, which aligns with both theoretical calculations and previous studies indicating ZrTe behaves as a weak TI under normal conditions.
View Article and Find Full Text PDF

Self-assembled, highly anisotropic nanostructures are spontaneously formed in the molecular beam epitaxy of antimony triselenide on GaAs substrates. These one-dimensional (1D) nanostripes have all the orientations parallel to the substrate surface and preserve the epitaxial relationship with the substrate. The shape of the nanostripes is directly related to the highly anisotropic stibnite structure of antimony triselenide which consists of 1D ribbons held together by weak van der Waals forces.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most common causes of dementia, accounting for more than 60% of all cases. It is a neurodegenerative disease in which symptoms such as a decline in memory, thinking, learning, and organizing skills develop gradually over many years and eventually become more severe. To date, there is no effective treatment for the cause of Alzheimer's disease, and the existing pharmacological options primarily help manage symptoms.

View Article and Find Full Text PDF

Introduction: Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space.

View Article and Find Full Text PDF

Blending carbon particles (CPs) and nanoscale bioactive cerium dioxide is a promising approach for designing composites for biomedical applications, combining the sorption and antioxidant potentials of each individual component. To address this issue, it is crucial to assess the correlation between the components' ratio, physicochemical parameters, and biofunctionality of the composites. Thus, the current research was aimed at fabricating C@CeO composites with different molar ratios and the examination of how the parameters of the composites affect their bioactivity.

View Article and Find Full Text PDF

The amphipathic bioactive compounds curcumin, resveratrol, and mitomycin C, which have similar solubility parameter component distributions, have been studied for encapsulation under batch conditions into core-shell nanocarriers composed of external hydrophobically functionalized polyelectrolytes and an inner matrix of polyesters or polyester blends: poly(l-lactide), poly(lactide--glycolide), and/or poly(ethylene succinate). Our contribution comprises determining the influence of process parameters on the properties and quality of the final products, namely core-shell nanoparticles loaded with appropriate drugs, according to process analysis technologymanagement. The crucial roles of the organic phase dosing rates and process temperatures were carefully investigated.

View Article and Find Full Text PDF

This Letter presents results from a combination of searches for Higgs boson pair production using 126-140  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.

View Article and Find Full Text PDF

We measure the light-driven response of a magnetic multilayer structure made of thin alternating layers of cobalt and platinum at the few-femtosecond timescale. Using attosecond magnetic circular dichroism, we observe how light rearranges the magnetic moment during and after excitation. The results reveal a sub-5 fs spike of magnetization in the platinum layer, which follows the shape of the driving pulse.

View Article and Find Full Text PDF

This Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→ℓνℓ^{'}ℓ^{'}(ℓ,ℓ^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140  fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined.

View Article and Find Full Text PDF

Excitation wavelength-dependent fluorescence anisotropy of 3-hydroxyflavone: revisiting the solvation processes and high-energy state excitation in ESIPT-active compounds.

Phys Chem Chem Phys

October 2024

Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, str. Wita Stwosza 57, 80-308 Gdańsk, Poland.

To gain a more comprehensive understanding of the phenomenon of high-fluorescence anisotropy of the normal form emission of ESIPT-active compounds in protic solvents, excitation wavelength dependence of emission anisotropy was investigated for 3-hydroxyflavone (3HF) using steady-state spectroscopic technique and quantum chemical calculations. It was shown for the first time that the anisotropy of 3HF normal form emission is characterized by significant dependence on excitation energy. Experimental results indicate that the fluorescence anisotropy of 3HF in methanol (at 20 °C) changes abruptly from about 0.

View Article and Find Full Text PDF

Controlled stigmergy in quasi-one-dimensional active particle systems.

Phys Rev E

August 2024

Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovak Republic.

In quasi-one-dimensional circularly symmetric systems of active particles, experiments and simulations reveal an indirect interplay between particles and environmental drag effects, proving crucial in the realm of generalized parametrically controlled stigmergy. Our investigation goes deeper into understanding how stigmergy manifests itself, closely examining unconventional, more physically grounded interpretations in contrast to established concepts. Deeper insights into the complex dynamics of stigmergically interacting particle systems are gained by systematically studying the transition regions between short- and long-term stigmergic effects.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a versatile technique in the biomedical field, but its application to the study of plant metabolism in vivo remains challenging because of magnetic susceptibility problems. In this study, we report the establishment of chemical exchange saturation transfer (CEST) for plant MRI. This method enables noninvasive access to the metabolism of sugars and amino acids in complex sink organs (seeds, fruits, taproots, and tubers) of major crops (maize, barley, pea, potato, sugar beet, and sugarcane).

View Article and Find Full Text PDF

The growing production and use of plastics significantly contribute to microplastics (MPs) contamination in the environment. Humans are exposed to MPs primarily through the gastrointestinal route, as these particles are present in beverages and food, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The Letter reports the most accurate measurement so far of the matter-antimatter imbalance during Pb-Pb collisions at a high energy level of 5.02 TeV.
  • It utilizes the Statistical Hadronization framework to determine precise values for the electric charge and baryon chemical potentials, μ_{Q} and μ_{B}.
  • The analysis of antiparticle-to-particle yield ratios shows that the collisions create a system that is generally baryon-free and electrically neutral at midrapidity.
View Article and Find Full Text PDF

The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In this work, taking the growth of MoSe as an example, the distinct growth processes on AlO (112¯0) and AlO (0001) are revealed by parallel monitoring using in situ reflectance anisotropy spectroscopy (RAS) and differential reflectance spectroscopy (DRS), respectively, highlighting the dominant role of the surface symmetry. In our previous study, we found that the RAS signal of MoSe grown on AlO (112¯0) initially increased and decreased ultimately to the magnitude of bare AlO (112¯0) when the first layer of MoSe was fully merged, which is herein verified by the complementary DRS measurement that is directly related to the film coverage.

View Article and Find Full Text PDF

This study investigates the lasing effects in a Fabry-Perot cavity to discern the binding interactions of thioflavin T (ThT) with various peptides associated with Alzheimer's disease, including Aβ(1-42), KLVFFA, and diphenylalanine (FF) in the condensed phase. Utilizing kinetic lasing measurements, the research explores ThT emission enhancements due to specific groove binding in β-sheet structures and highlights additional contributions from weak surface interactions and solvent-solute interactions. Lasing spectroscopy reveals a lack of transition of the FF system from its native state to an amyloid-like structure, challenging traditional ThT assay interpretations.

View Article and Find Full Text PDF