12 results match your criteria: "Institute of Engineering Design and Product Development[Affiliation]"

Thermo-oxidation of biomass is an important process that occurs through a variety of reaction pathways depending on the chemical nature of the molecules and reaction conditions. These processes can be modeled using reactive molecular dynamics to study chemical reactions and the evolution of converted molecules over time. The advantage of this approach is that many molecules can be modeled, but it is challenging to use the large amount of data obtained from such a simulation to determine reaction products and pathways.

View Article and Find Full Text PDF

A Novel Procedure for Knee Flexion Angle Estimation Based on Functionally Defined Coordinate Systems and Independent of the Marker Landmarks.

Int J Environ Res Public Health

December 2022

Robotics Research Group, Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium.

Knee angles are kinematic quantities that are commonly presented in gait analysis reports. They are typically calculated as the relative angles between the anatomical coordinate systems rigidly attached to the femur and the tibia. To give these angles a biomechanical meaning, the coordinate systems must be defined with respect to some anatomical landmarks.

View Article and Find Full Text PDF

Cartilage damage typically starts at its surface, either due to wear or trauma. Treatment of these superficial defects is important in preventing degradation and osteoarthritis. Biomaterials currently used for deep cartilage defects lack appropriate properties for this application.

View Article and Find Full Text PDF

Blood pumps are becoming increasingly important for medical devices. They are used to assist and control the blood flow and blood pressure in the patient's body. To accurately control blood pumps, information about important hydrodynamic parameters such as blood flow rate, pressure difference and viscosity is needed.

View Article and Find Full Text PDF

CO removal via membrane oxygenators has become an important and reliable clinical technique. Nevertheless, oxygenators must be further optimized to increase CO removal performance and to reduce severe side effects. Here, in vitro tests with water can significantly reduce costs and effort during development.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenators are essential medical devices for the treatment of patients with respiratory failure. A promising approach to improve oxygenator performance is the use of microstructured hollow fiber membranes that increase the available gas exchange surface area. However, by altering the traditional circular fiber shape, the risk of low flow, stagnating zones that obstruct mass transfer and encourage thrombus formation, may increase.

View Article and Find Full Text PDF

Animal blood is used in mock circulations or in forensic bloodstain pattern analysis. Blood viscosity is important in these settings as it determines the driving pressure through biomedical devices and the shape of the bloodstain. However, animal blood can never exactly mimic human blood due to erythrocyte properties differing among species.

View Article and Find Full Text PDF

CO removal via membrane oxygenators during lung protective ventilation has become a reliable clinical technique. For further optimization of oxygenators, accurate prediction of the CO removal rate is necessary. It can either be determined by measuring the CO content in the exhaust gas of the oxygenator (sweep flow-based) or using blood gas analyzer data and a CO solubility model (blood-based).

View Article and Find Full Text PDF

The contact between solids in metal-forming operations often involves temperature-dependent viscoplasticity of the workpiece. In order to estimate the real contact area in such contexts, both the topography and the deformation behaviour should be taken into account. In this work, a deterministic approach is used to represent asperities in appropriately shaped quadratic surfaces.

View Article and Find Full Text PDF

The origin of friction and wear in polycrystalline materials is intimately connected with their microstructural response to interfacial stresses. Although many mechanisms that govern microstructure evolution in sliding contacts are generally understood, it is still a challenge to ascertain which mechanisms matter under what conditions, which limits the development of tailor-made microstructures for reducing friction and wear. Here, we shed light on the circumstances that promote plastic deformation and surface damage by studying several face-centered cubic CuNi alloys subjected to sliding with molecular dynamics simulations featuring tens of millions of atoms.

View Article and Find Full Text PDF

Blood pumps have found applications in heart support devices, oxygenators, and dialysis systems, among others. Often, there is no room for sensors, or the sensors are simply unreliable when long-term operation is required. However, control systems rely on those hard-to-measure parameters, such as blood flow rate and pressure difference, thus their estimation takes a central role in the development process of such medical devices.

View Article and Find Full Text PDF

Background: Acetabular labral tears are managed with suture anchors providing good clinical outcomes. Knotless anchors are easier to use and have a quicker insertion time compared to knotted anchors. The purpose of this study was to compare the biomechanical behavior of two different anchor designs (knotted vs.

View Article and Find Full Text PDF