3 results match your criteria: "Institute of Energy Systems and Thermodynamics[Affiliation]"
Sci Rep
December 2024
Institute of Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, Wien, 1060, Austria.
The transition towards climate-neutral industry is a challenge, particularly for heavy industries like steel and basic chemicals. Existing models for assessing industrial transformation often lack spatial resolution and fail to capture individual investment decisions. Consequently, the spatial interplay between industry transformation, energy availability, infrastructure availability, and the dynamics of discrete investments is inadequately addressed.
View Article and Find Full Text PDFHeliyon
April 2024
Institute of Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9/BA/E302, Vienna, A-1060, Austria.
Particle-based systems have immense potential for combining thermal energy storage (TES) with renewable energy sources. The so-called sandTES system, which is an active TES system, utilizes sand or other small particles as a storage material and consists of a hot tank, a cold tank, and a reversible fluidized bed heat exchanger. In the preferred design, the tubes are arranged in horizontal serpentine tube bundles; thus, the headers are positioned vertically, for one phase subcritical, two-phase and supercritical water/steam conditions.
View Article and Find Full Text PDFMethodsX
April 2022
TU-Wien, Institute of Energy Systems and Thermodynamics, Getreidemarkt 9/BA, Vienna 1060, Austria.
The challenge of heat exchanger network retrofit is often addressed using deterministic algorithms. However, the complexity of the retrofit problems, combined with multi-period operation, makes it very difficult to find any feasible solution. In contrast, stochastic algorithms are more likely to find feasible solutions in complex solution spaces.
View Article and Find Full Text PDF