92 results match your criteria: "Institute of Endocrinology and Experimental Oncology[Affiliation]"

Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca signaling, which is crucial for proper PNS myelination.

View Article and Find Full Text PDF

In this work, we report on the synthesis and properties of a new sensitizer for photodynamic therapy applications, constituted by a ruthenium(ii) complex (1) featuring a ligand inspired from natural isoquinoline alkaloids. The spectroscopic analysis revealed that 1 is characterized by an intense red emission ( = 620 nm, = 0.17) when excited at 550 nm, a low energy radiation warranting for a safe therapeutic approach.

View Article and Find Full Text PDF
Article Synopsis
  • - Axitinib, a drug used for advanced kidney cancer, is being tested for effectiveness against glioblastoma, a severe brain tumor, and shows improved results when combined with other treatments
  • - Research indicates that axitinib can lead to cellular senescence (aging) in both tumor and normal cells, but using the antioxidant N-Acetyl-L-Cysteine (NAC) may limit this effect in normal cells while preserving its anti-cancer properties
  • - The study reveals that NAC combined with axitinib enhances blood vessel health in brain tumors and protects against liver damage from axitinib, suggesting a potential for better treatment outcomes with reduced side effects
View Article and Find Full Text PDF

In most human tumors, the MAPK pathway is constitutively activated. Since p90RSK is downstream of MAPK, it is often hyperactive and capable of phosphorylating oncogenic substrates. We have previously shown that p90RSK phosphorylates MDM2 at S166, promoting p53 degradation in follicular thyroid carcinomas.

View Article and Find Full Text PDF

We assessed the impact of DNA damage response and repair (DDR) biomarker expressions in 222 node-positive early breast cancer (BC) patients from a previous Phase III GOIM 9902 trial of adjuvant taxanes. At a median follow-up of 64 months, the original study showed no disease-free survival (DFS) or overall survival (OS) differences with the addition of docetaxel (D) to epirubicine-cyclophosphamide (EC). Immunohistochemistry was employed to assess the expression of DDR phosphoproteins (pATM, pATR, pCHK1, γH2AX, pRPA32, and pWEE1) in tumor tissue, and their association with clinical outcomes was evaluated through the Cox elastic net model.

View Article and Find Full Text PDF

Essential gene screening identifies the bromodomain-containing protein BRPF1 as a new actionable target for endocrine therapy-resistant breast cancers.

Mol Cancer

August 2024

Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, Baronissi, SA, 84081, Italy.

Identifying master epigenetic factors controlling proliferation and survival of cancer cells allows to discover new molecular targets exploitable to overcome resistance to current pharmacological regimens. In breast cancer (BC), resistance to endocrine therapy (ET) arises from aberrant Estrogen Receptor alpha (ERα) signaling caused by genetic and epigenetic events still mainly unknown. Targeting key upstream components of the ERα pathway provides a way to interfere with estrogen signaling in cancer cells independently from any other downstream event.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. -Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways.

View Article and Find Full Text PDF

Introduction: The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation.

View Article and Find Full Text PDF

Corrigendum to 'Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics' [Genes & Diseases 10 (2023) 1367-1401].

Genes Dis

July 2024

Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain.

[This corrects the article DOI: 10.1016/j.gendis.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect.

View Article and Find Full Text PDF

Testicular/paratesticular mesothelial tumours: Uncommon histopathologic entities in a very complex anatomical site.

Pathol Res Pract

January 2024

Pathology Unit, Azienda Policlinico Unversità 'L. Vanvitelli, Italy; Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy.

Mesothelial tumours of the testicular/paratesticular region are uncommon, poorly characterised and difficult-to-diagnose lesions. They encompass entirely benign proliferations (adenomatoid tumour) and malignant, very aggressive tumours (mesothelioma) whose morphological features can be overlapping, highly variable and confounding. Moreover, testicular/paratesticular mesothelial tumours comprise relatively new entities with indolent behaviour (well-differentiated papillary mesothelial tumour) as well as tumours which cannot be correctly included in any of the aforementioned categories and whose classification is still controversial.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are spherical, lipid-based nano-structures, which are released by Gram-negative bacteria in both in vitro and in vivo conditions. The size and composition of OMVs depend on not only the producer bacterial species but also cells belonging to the same strain. The mechanism of vesicles' biogenesis has a key role in determining their cargo and the pattern of macromolecules exposed on their surface.

View Article and Find Full Text PDF

In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN.

View Article and Find Full Text PDF

Metformin: A New Inhibitor of the Wnt Signaling Pathway in Cancer.

Cells

August 2023

URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples "Federico II", 80131 Naples, Italy.

The biguanide drug metformin is widely used in type 2 diabetes mellitus therapy, due to its ability to decrease serum glucose levels, mainly by reducing hepatic gluconeogenesis and glycogenolysis. A considerable number of studies have shown that metformin, besides its antidiabetic action, can improve other disease states, such as polycystic ovary disease, acute kidney injury, neurological disorders, cognitive impairment and renal damage. In addition, metformin is well known to suppress the growth and progression of different types of cancer cells both in vitro and in vivo.

View Article and Find Full Text PDF

Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body.

View Article and Find Full Text PDF

The World Health Organization has indicated as a high-priority pathogen whose infections urgently require an update of the antibacterial treatments pipeline. Recently, bacterial ureases and carbonic anhydrases (CAs) were found to represent valuable pharmacological targets to inhibit bacterial growth. Hence, we explored the underexploited possibility of developing a multiple-targeted anti- therapy by assessing the antimicrobial and antibiofilm activities of a CA inhibitor, carvacrol (CAR), amoxicillin (AMX) and a urease inhibitor (SHA), alone and in combination.

View Article and Find Full Text PDF

Cannabinoids in the Modulation of Oxidative Signaling.

Int J Mol Sci

January 2023

Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.

Cannabis sativa-derived compounds, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and components of the endocannabinoids system, such as N-arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are extensively studied to investigate their numerous biological effects, including powerful antioxidant effects. Indeed, a series of recent studies have indicated that many disorders are characterized by alterations in the intracellular antioxidant system, which lead to biological macromolecule damage. These pathological conditions are characterized by an unbalanced, and most often increased, reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay.

View Article and Find Full Text PDF

The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the stability of MDM2 which in turn binds p53, ubiquitinating it and promoting its degradation by proteasome. A pharmacological inhibitor of p90RSK, BI-D1870, decreases MDM2 phosphorylation, and restores p53 function, which in turn transcriptionally increases the expression of cell cycle inhibitor p21 and of pro-apoptotic protein Bax and downregulates the anti-apoptotic protein Bcl-2, causing a block of cell proliferation, measured by a BrdU assay and growth curve, and promoting apoptosis, measured by a TUNEL assay.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is poorly susceptible to cytotoxic therapies. Amplification of the epidermal growth factor receptor (EGFR) and deletion of exons 2 to 7, which generates EGFR variant III (vIII), are the most common molecular alterations of GBMs that contribute to the aggressiveness of the disease. Recently, it has been shown that EGFR/EGFRvIII-targeted inhibitors enhance mitochondrial translocation by causing mitochondrial accumulation of these receptors, promoting the tumor drug resistance; moreover, they negatively modulate intrinsic mitochondria-mediated apoptosis by sequestering PUMA, leading to impaired apoptotic response in GBM cells.

View Article and Find Full Text PDF

The epidemic spread of obesity is nowadays recognized as a global health and economic burden, arising great interest in the scientific community. The rate of adult obesity steadily increases concomitantly with the cancer incidence. As has been comprehensively reported, obesity is included among the multiple cancer risk factors and can progressively cause and/or exacerbate certain cancer types, as colorectal and breast cancers.

View Article and Find Full Text PDF

Background: Dried blood spot (DBS) testing is a well-known method of bio-sampling by which blood samples are blotted and dried on filter paper. The dried samples can then be analyzed by several techniques such as DNA amplification and HPLC. We have developed a non-invasive sampling followed by an alternative protocol for genomic DNA extraction from a drop of blood adsorbed on paper support.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, and due to its unique features, its management is certainly one of the most challenging ones among all cancers. N6-isopentenyladenosine (IPA) and its analog N6-benzyladenosine (N6-BA) are modified nucleosides endowed with potent antitumor activity on different types of human cancers, including GBM. Corroborating our previous finding, we demonstrated that IPA and N6-BA affect GBM cell line proliferation by modulating the expression of the F-box WD repeat domain-containing-7 (FBXW7), a tumor suppressor with a crucial role in the turnover of many proteins, such as SREBPs and Mcl1, involved in malignant progression and chemoresistance.

View Article and Find Full Text PDF