112,701 results match your criteria: "Institute of Electronic Structure & Laser IESL[Affiliation]"

Characterization of antimicrobial properties of TroH2A-29 peptide from golden pompano (Trachinotus ovatus).

Dev Comp Immunol

January 2025

Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China. Electronic address:

Antimicrobial peptides (AMPs) are small, potent molecules that serve as a crucial first line of defense across a wide range of organisms, including fish. In this study, we investigated the antimicrobial properties of a novel peptide, spanning residues 52 to 80 of the full-length histone H2A protein, comprising a total of 29 amino acids. This peptide, designated as Histone H2A-29 (TroH2A-29), was derived from the golden pompano (Trachinotus ovatus) and evaluated for its activity against both Gram-positive bacteria, Lactococcus garvieae and Staphylococcus epidermidis, and Gram-negative bacteria, Vibrio alginolyticus and Vibrio harveyi.

View Article and Find Full Text PDF

Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging.

Vascul Pharmacol

January 2025

Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy. Electronic address:

The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.

View Article and Find Full Text PDF

Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.

View Article and Find Full Text PDF

Ultrasensitive photoelectrochemical detection of cancer markers based on heterojunctions constructed from BiO star-like flower nanoclusters and CdS hollow nanorods.

Talanta

January 2025

Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China. Electronic address:

CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. BiO-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template.

View Article and Find Full Text PDF

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Self-Assembling of Multilayered Polymorphs with Ion Beams.

Nano Lett

January 2025

Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.

Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.

View Article and Find Full Text PDF

Boosting the Hydrogen Evolution Activity of a Low-Coordinated Co─N─C Catalyst via Vacancy Defect-Mediated Alteration of the Intermediate Adsorption Configuration.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.

The cobalt-nitrogen-carbon (Co─N─C) single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the hydrogen evolution reaction (HER) and their activity is highly dependent on the coordination environments of the metal centers. Herein, a NaHCO etching strategy is developed to introduce abundant in-plane pores within the carbon substrates that further enable the construction of low-coordinated and asymmetric Co─N sites with nearby vacancy defects in a Co─N─C catalyst. This catalyst exhibits a high HER activity with an overpotential (η) of merely 78 mV to deliver a current density of 10 mA cm, a Tafel slope of 45.

View Article and Find Full Text PDF

Intermetallic RNiSi (R = Ca, La, and Y) Catalysts with Electron-Rich Ni Sites for Continuous Flow Selective Hydrogenation of Maleic Anhydride.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.

View Article and Find Full Text PDF

Porous polymers: structure, fabrication and application.

Mater Horiz

January 2025

Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.

The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials.

View Article and Find Full Text PDF

The tunable electronic band structure of a AlP/CsBiICl van der Waals heterostructure induced by an electric field: a first-principles study.

Phys Chem Chem Phys

January 2025

Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.

Constructing van der Waals heterostructures (vdWHs) has emerged as an attractive strategy to combine and enhance the optoelectronic properties of stacked materials. Herein, by means of first-principles calculations, we investigate the geometric and electronic structures of the AlP/CsBiICl vdWH as well as its tunable band structure an external electric field. The AlP/CsBiICl vdWH is structurally and thermodynamically stable due to the low binding energy and the small energy fluctuation at room temperature.

View Article and Find Full Text PDF

The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin.

View Article and Find Full Text PDF

Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.

View Article and Find Full Text PDF

Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.

View Article and Find Full Text PDF

Ultrahigh carrier mobility and multidirectional piezoelectricity in 2D Janus copper-containing chalcogenide monolayers.

Phys Chem Chem Phys

January 2025

Institute for Computational Materials Science, Joint Center for Theoretical Physics, and Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.

Two-dimensional (2D) materials have attracted enormous research attention due to their remarkable properties and potential applications in electronic and optoelectronic devices. In this work, Janus 2D copper-containing chalcogenides, CuPSeS and CuPTeSe monolayers, are proposed and studied systematically based on first-principles calculations. These two Janus-structured materials possess the same thermal and dynamic stability as the perfect CuPSe structure.

View Article and Find Full Text PDF

Bioelectronic face masks can easily collect biomarkers in saliva, in which free cortisol is abundant. However, conventional bioelectronic face masks involve significant challenges in terms of permeability and inhalation due to their nonpermeable film-type structure. Herein, we introduce a flexible and permeable nanomesh-based wearable biosensor designed for bioelectronic face masks that monitor cortisol levels.

View Article and Find Full Text PDF

Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.

View Article and Find Full Text PDF

First-Principles Assessment of ZnTe and CdSe as Prospective Tunnel Barriers at the InAs/Al Interface.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.

View Article and Find Full Text PDF

Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely Cu5BHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known Cu3BHT phase.

View Article and Find Full Text PDF

Aim: This study aimed to translate the partner breastfeeding influence scale (PBIS) to the Afaan Oromo language and determine its psychometric properties.

Methods: A cross-sectional study involving 320 fathers of infants under six months old was conducted with a 4-week retest. The scale underwent translation and back-translation before its psychometric evaluation.

View Article and Find Full Text PDF

Hypochlorous acid (HClO) is a well-known inflammatory signaling molecule, while lipid droplets (LDs) are dynamic organelles closely related to inflammation. Using organic small-molecule fluorescence imaging technology to target LDs for precise monitoring of HClO is one of the most effective methods for diagnosing inflammation-related diseases. A thorough investigation of how probes detect biological markers and the influencing factors can aid in the design of probe molecules, the selection of high-performance tools, and the accuracy of disease detection.

View Article and Find Full Text PDF

Ligand engineering boosts catalase-like activity of gold nanoclusters for cascade reactions combined with glucose oxidase in ZIF-8 matrix.

Anal Chim Acta

February 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:

Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF