5 results match your criteria: "Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.[Affiliation]"

An increasing number of studies in botanical gardens are investigating species' responses to climate change. However, the influence of local environmental or habitat conditions such as soil nutrient status or microclimate on phenology and the link between morpho-physiological functional traits and phenological stages are poorly understood, making it difficult to extrapolate patterns from botanical gardens to natural environments. Therefore, we selected herbaceous species growing in two semi-natural habitats, namely, semi-dry grasslands (SDGs) and mesophilic grasslands (MGs) and the botanical garden of Jena (Germany) to investigate the influence of habitat conditions on interspecific and intraspecific patterns in phenology, functional traits and their associations.

View Article and Find Full Text PDF

Many insects, including several orthopterans, undergo dramatic changes in body coloration during ontogeny. This variation is particularly intriguing in gomphocerine grasshoppers, where the green and brown morphs appear to be genetically determined (Schielzeth & Dieker, 2020, , 20, 63; Winter et al., 2021, , 127, 66).

View Article and Find Full Text PDF

Ectothermic animals depend on external heat sources for pursuing their daily activities. However, reaching sufficiently high temperature can be limiting at high altitudes, where nights are cold and seasons short. We focus on the role of a green-brown color polymorphism in grasshoppers from alpine habitats.

View Article and Find Full Text PDF

Discrete color polymorphisms represent a fascinating aspect of intraspecific diversity. Color morph ratios often vary clinally, but in some cases, there are no marked clines and mixes of different morphs occur at appreciable frequencies in most populations. This poses the questions of how polymorphisms are maintained.

View Article and Find Full Text PDF

Phenological responses to changing temperatures are known as "fingerprints of climate change," yet these reactions are highly species specific. To assess whether different plant characteristics are related to these species-specific responses in flowering phenology, we observed the first flowering day (FFD) of ten herbaceous species along two elevational gradients, representing temperature gradients. On the same populations, we measured traits being associated with (1) plant performance (specific leaf area), (2) leaf biochemistry (leaf C, N, P, K, and Mg content), and (3) water-use efficiency (stomatal pore area index and stable carbon isotopes concentration).

View Article and Find Full Text PDF