600 results match your criteria: "Institute of Eco-Environmental and Soil Sciences[Affiliation]"

Experimental Investigation of Cadmium Isotope Fractionation during Adsorption on Montmorillonite and Kaolinite.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.

Cadmium (Cd) isotopes have recently emerged as novel tracers of Cd sources and geochemical processes. Widespread clay minerals play a key role in Cd migration due to their strong adsorption capacity, but the mechanism of Cd isotope fractionation during adsorption onto clay minerals is poorly understood. Here, we experimentally investigated the adsorption mechanisms of Cd on montmorillonite (2:1) and kaolinite (1:1) by using extended X-ray absorption fine structure (EXAFS) spectroscopy.

View Article and Find Full Text PDF

Propyrisulfuron, a novel sulfonylurea herbicide, effectively suppresses intracellular acetolactate synthase activity for weed control, but its adsorption behavior in the soil environment remains unclear. To assess potential agroecosystem risks, the adsorption-desorption behavior and mechanism of propyrisulfuron in six typical agricultural soils of China were investigated using a batch equilibrium method, Density Functional Theory (DFT), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX) techniques. It is indicated that the adsorption-desorption of propyrisulfuron in six soils reached equilibrium at 36 hours under the optimum water-to-soil ratio (WSr) of 5:1.

View Article and Find Full Text PDF

Missing pieces in the puzzle of ecology of microbial arsenate reduction.

J Hazard Mater

December 2024

Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China.

Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic.

View Article and Find Full Text PDF

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.

View Article and Find Full Text PDF

Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process.

Sci Total Environ

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.

View Article and Find Full Text PDF

Besides traditional organophosphate esters: The ecological risks of emerging organophosphate esters in the Yangtze River basin cannot be ignored.

Environ Pollut

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

In addition to traditional organophosphate esters (tOPEs), emerging organophosphate esters (eOPEs) have increasingly been detected in the environment, but their risks remain unclear. This study detected 12 tOPEs and 7 eOPEs in surface water, sediment, and suspended particulate matter (SPM) samples from important aquatic habitats and drinking water sources in Yibin (YB), Yichang (YC), Shanghai (SH), and Poyang Lake (PY) within the Yangtze River basin. The total concentration of OPEs (ΣOPEs) in surface water, sediment, and SPM from these four regions were 22.

View Article and Find Full Text PDF

Degradation of myosmine by a novel bacterial strain Sphingopyxis sp. J-6 and its degradation pathways.

J Hazard Mater

December 2024

College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002,  China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China. Electronic address:

This study isolated a myosmine-degrading bacterial strain J-6 from tobacco-growing soil. The identification of this strain revealed it to be a new species within the genus Sphingopyxis. Analysis of the myosmine degradation products by HPLC, preparative HPLC, and UHPLC-MS/MS identified 8 metabolites, among which 3-pyridylacetic acid (3-PAA), 5-(3-pyridyl)tetrahydrofuranone-2 (PTHF), and 4-hydroxy-4-(3-pyridyl)butanoic acid (HPBA) were three novel metabolites that were not previously found in microbial degradation of tobacco alkaloids.

View Article and Find Full Text PDF

Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher.

Anal Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.

Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.

View Article and Find Full Text PDF

Advanced Mass-Spectra-Based Machine Learning for Predicting the Toxicity of Traditional Chinese Medicines.

Anal Chem

January 2025

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.

Traditional Chinese medicine (TCM) has been a cornerstone of health care for centuries, valued for its preventive and therapeutic properties. However, recent decades have revealed significant toxicological concerns associated with TCMs due to their complex chemical compositions. Traditional QSAR (quantitative structure-activity relationships) models, which predict toxicity based on chemical structures, face challenges with the intricate nature of TCM compounds.

View Article and Find Full Text PDF

Long-term stability of comammox Nitrospira under weakly acidic conditions and their acid-adaptive mechanisms revealed by genome-centric metatranscriptomics.

Bioresour Technol

December 2024

School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.

Despite their widespread presence in acidic environments, the stability and adaptative mechanisms of complete ammonia oxidization (comammox) bacteria remain poorly understood. In this three-year study, comammox Nitrospira consistently dominated both abundance and activity in an acidic nitrifying reactor (pH = 6.3-6.

View Article and Find Full Text PDF

Simultaneous removal of methane and high nitrite from the wastewater by Methylomonas sp. with soluble methane monooxygenase.

Bioresour Technol

December 2024

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China. Electronic address:

Aerobic methanotrophs play a crucial role in controlling methane emission in wastewater treatment. However, the high nitrite produced during ammonium oxidation, nitrate assimilation, and denitrification hinders methane oxidation and nitrogen removal. In this study, Methylomonas sp.

View Article and Find Full Text PDF

Characterization and inhibition of hydrogen sulfide-producing bacteria from petroleum reservoirs subjected to alkali-surfactant-polymer flooding.

Bioresour Technol

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.

Article Synopsis
  • Alkali-surfactant-polymer (ASP) flooding is a new method for oil recovery, but managing harmful bacteria that produce hydrogen sulfide (H2S) in alkaline environments is still a challenge.!* -
  • Four strains of alkaline-tolerant sulfur-producing bacteria (SPB) were identified, showing different preferences for sulfur metabolism and varying responses to nitrite and nitrate.!* -
  • Glutaraldehyde was found to be effective in inhibiting H2S production, suggesting it could be a practical solution for managing souring in alkaline oil reservoirs during ASP flooding.!*
View Article and Find Full Text PDF

Thermophilic bacteria contributing to humus accumulation in hyperthermophilic aerobic fermentation of mushroom residue.

Bioresour Technol

December 2024

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Article Synopsis
  • The study investigates the influence of thermophilic bacteria on the formation of humus during hyperthermophilic composting of organic waste, particularly mushroom residue.
  • Results indicate that composting at high temperatures (>80°C) for 18 days resulted in significantly more humus production (83 mg/g) compared to traditional thermophilic composting (9.7 mg/g).
  • Machine learning revealed that specific thermophilic bacteria contributed to the breakdown of organic matter and the production of humic substances, enhancing the efficiency of converting organic waste into nutrient-rich compost.
View Article and Find Full Text PDF
Article Synopsis
  • Microplastics contamination in agricultural soils affects carbon and nitrogen cycles, leading to altered greenhouse gas emissions.
  • The presence of microplastics decreases soil water retention, which results in increased CO, CH₄, and NO emissions, while also enhancing soil structure and organic carbon storage.
  • Changes in microbial communities due to microplastics impact enzyme activity related to carbon and nitrogen processes, further complicating greenhouse gas dynamics and highlighting the need for better environmental management.
View Article and Find Full Text PDF

Sulfuric Acid-Driven Nucleation Enhanced by Amines from Ethanol Gasoline Vehicle Emission: Machine Learning Model and Mechanistic Study.

Environ Sci Technol

December 2024

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Article Synopsis
  • The study focuses on the crucial role of sulfuric acid (SA) and amines in atmospheric particle formation, particularly through the nucleation mechanism.
  • Researchers used machine learning to predict the intrinsic enhancing potential (IEP) of various amines, calculating the formation free energy of dimer clusters for 58 amines.
  • Results showed that diethylamine (DEA) significantly enhances nucleation rates, especially in areas with high usage of ethanol gasoline vehicles, indicating its importance in atmospheric chemistry.
View Article and Find Full Text PDF
Article Synopsis
  • * CCR causes bacteria to favor glucose over other sugars, which leads to reduced efficiency in biofuel and chemical production, yet most research has primarily focused on a few bacterial species.
  • * This article reviews the factors contributing to CCR, examines fermentation conditions, and suggests strategies to improve the simultaneous use of mixed sugars, aiming to enhance production yields for biofuels and chemicals in future processes.
View Article and Find Full Text PDF

New insights into interfacial dynamics and mechanisms of biochar-derived dissolved organic matter on arsenic redistribution in Schwertmannite.

Environ Pollut

November 2024

School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China.

Biochar is extensively utilized for the remediation of environments contaminated with heavy metals (HMs). However, its derived-dissolved organic matter (BDOM) can interact with iron oxides, which may adversely influence the retention of HMs. This study investigates the effect of BDOM derived from tobacco stalk (TS) and tobacco petiole (TP) biochar on the redistribution behavior of As(V) in acid mine drainage (AMD)-impacted environments, particularly concentrating on the interactions with Schwertmannite (Sch).

View Article and Find Full Text PDF

Surface functionalization of two-dimensional nanomaterials beyond graphene: Applications and ecotoxicity.

Adv Colloid Interface Sci

February 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications.

View Article and Find Full Text PDF

Insights into chemoautotrophic traits of a prevalent bacterial phylum CSP1-3, herein .

Natl Sci Rev

November 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.

Candidate bacterial phylum CSP1-3 has not been cultivated and is poorly understood. Here, we analyzed 112 CSP1-3 metagenome-assembled genomes and showed they are likely facultative anaerobes, with 3 of 5 families encoding autotrophy through the reductive glycine pathway (RGP), Wood-Ljungdahl pathway (WLP) or Calvin-Benson-Bassham (CBB), with hydrogen or sulfide as electron donors. Chemoautotrophic enrichments from hot spring sediments and fluorescence hybridization revealed enrichment of six CSP1-3 genera, and both transcribed genes and DNA-stable isotope probing were consistent with proposed chemoautotrophic metabolisms.

View Article and Find Full Text PDF

Speciation and biogeochemical behavior of perfluoroalkyl acids in soils and their environmental implications: A review.

Eco Environ Health

December 2024

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Article Synopsis
  • Perfluoroalkyl acids (PFAAs) are significant emerging pollutants in environmental chemistry, with limited research on their various forms and behaviors in the environment.
  • The review discusses the classification, toxicity, extraction methods, and remediation strategies for PFAAs, identifying four main forms found in soils.
  • It emphasizes the importance of understanding the interactions between PFAA types, elemental cycling, and microbial activity for effective soil remediation and encourages further research on PFAA behavior in different environments.
View Article and Find Full Text PDF

Sex Difference in Histopathological and Steroidogenesis Metabolism of Zebrafish After Exposure to Spiromesifen.

Environ Toxicol

November 2024

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China.

Spiromesifen (SPM) is widely used for orchard mites and white fly control. The ecotoxicological data suggested that SPM is highly toxic to fish, but the information about its toxic effect on zebrafish is still obscure. In this study, adult zebrafish were exposed to SPM for 21 days.

View Article and Find Full Text PDF

Evaluating the influence of alternating flooding and drainage on antimony speciation and translocation in a soil-rice system.

Sci Total Environ

December 2024

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

The quantitative evaluation of antimony (Sb) accumulation in rice has garnered significant attention due to the potential risks to human health. A pot experiment was conducted to investigate the essential nodes of Sb transfer in soil-rice system. Seven step extract results showed that during the flooding period, organic matter releasing was the primary factor contributing 14.

View Article and Find Full Text PDF

Photochemistry of microplastics-derived dissolved organic matter: Reactive species generation and organic pollutant degradation.

Water Res

February 2025

Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.

Dissolved organic matter (DOM) originating from microplastics (MPs-DOM) is increasingly recognized as a substantial component of aquatic DOM. The photochemistry of MPs-DOM, essential for understanding its environmental fate and impacts, remains largely unexplored. This study investigates the photochemical behaviors of MPs-DOM derived from two common plastics: polystyrene (PS) and polyvinyl chloride (PVC), which represent aromatic and aliphatic plastics, respectively.

View Article and Find Full Text PDF

Metabolomics reveals the size effect of microplastics impeding membrane synthesis in rice cells.

Ecotoxicol Environ Saf

December 2024

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Jiangxi Province for agricultural environmental pollution prevention and control in red soil hilly region, School of life sciences, Jinggangshan University, Ji'an 343009, China.

The global-scale production of plastics has led to a significant accumulation in the environment, and it has become a major stressor to environmental sustainability, agricultural crops, and human health. Here we report the particle size effect of polystyrene (PS, typically microplastic) on the impact on rice suspension cells. This study used PS of different particle sizes (30 nm, 200 nm, and 2 μm) in a three-day co-culture experiment, the results showed that 30 nm, 200 nm, and 2 μm PS at the same concentration (100 μg/mL) caused 4.

View Article and Find Full Text PDF