115 results match your criteria: "Institute of Earth and Environmental Science[Affiliation]"

Fault roughness controls injection-induced seismicity.

Proc Natl Acad Sci U S A

January 2024

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Geomechanics and Scientific Drilling, Potsdam 14473, Germany.

Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induced seismicity remains elusive. Here, we investigate the effects of fault geometry and stress heterogeneity on fluid-induced fault slip and associated seismicity characteristics using laboratory experiments and numerical modeling.

View Article and Find Full Text PDF

Evolutionary adaptation of trees and modelled future larch forest extent in Siberia.

Ecol Modell

April 2023

Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany.

With changing climate, the boreal forest could potentially migrate north and become threatened by droughts in the south. However, whether larches, the dominant tree species in eastern Siberia, can adapt to novel situations is largely unknown but is crucial for predicting future population dynamics. Exploring variable traits and trait adaptation through inheritance in an individual-based model can improve our understanding and help future projections.

View Article and Find Full Text PDF

Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. Here, we present new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. We quantitatively investigate the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing and remobilization as first-order controls of the physical hydrology on ore formation.

View Article and Find Full Text PDF

FeO represents an important end-member for planetary interiors mineralogy. However, its properties in the liquid state under high pressure are poorly constrained. Here, in situ high-pressure and high-temperature X-ray diffraction experiments, ab initio simulations, and thermodynamic calculations are combined to study the local structure and density evolution of liquid FeO under extreme conditions.

View Article and Find Full Text PDF

The scope of this work is to discuss the proper choice of macrodispersion coefficients in modeling contaminant transport through the advection dispersion equation (ADE). It is common to model solute concentrations in transport by groundwater with the aid of the ADE. Spreading is quantified by macrodispersivity coefficients, which are much larger than the laboratory observed pore-scale dispersivities.

View Article and Find Full Text PDF

Characterization and In Vitro Cytotoxicity Safety Screening of Fractionated Organosolv Lignin on Diverse Primary Human Cell Types Commonly Used in Tissue Engineering.

Biology (Basel)

April 2022

G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany.

There is limited data assessing the cytotoxic effects of organosolv lignin with cells commonly used in tissue engineering. Structural and physico-chemical characterization of fractionated organosolv lignin showed that a decrease of the molecular weight (MW) is accompanied by a less branched conformation of the phenolic biopolymer (higher S/G ratio) and an increased number of aliphatic hydroxyl functionalities. Enabling stronger polymer-solvent interactions, as proven by the Hansen solubility parameter analysis, low MW organosolv lignin (2543 g/mol) is considered to be compatible with common biomaterials.

View Article and Find Full Text PDF

The attribution of changing intensity of rainfall extremes to global warming is a key challenge of climate research. From a thermodynamic perspective, via the Clausius-Clapeyron relationship, rainfall events are expected to become stronger due to the increased water-holding capacity of a warmer atmosphere. Here, we employ global, 1-hourly temperature and 3-hourly rainfall data to investigate the scaling between temperature and extreme rainfall.

View Article and Find Full Text PDF

Previous research has identified a predictive model of how a nation's distribution of gross domestic product (GDP) among agriculture (a), industry (i), and services (s) changes as a country develops. Here we use this national model to analyze the composition of GDP for US Metropolitan Statistical Areas (MSA) over time. To characterize the transfer of GDP shares between the sectors in the course of economic development we explore a simple system of differential equations proposed in the country-level model.

View Article and Find Full Text PDF

Six conceptually different transport models were applied to the macrodispersion experiment (MADE)-1 field tracer experiment as a first major attempt for model comparison. The objective was to show that complex mass distributions in heterogeneous aquifers can be predicted without calibration of transport parameters, solely making use of structural and flow data. The models differ in their conceptualization of the heterogeneous aquifer structure, computational complexity, and use of conductivity data obtained from various observation methods (direct push injection logging, DPIL, grain size analysis, pumping tests and flowmeter).

View Article and Find Full Text PDF

The trade-off between current and future reproduction is a cornerstone of life history theory, but the role of within-individual plasticity on life history decisions and its connections with overall fitness and behaviour remains largely unknown. By manipulating available resources for oviposition at the beginning of the reproductive period, we experimentally constrained individual life history trajectories to take different routes in a laboratory study system, the beetle Callosobruchus maculatus, and investigated its causal effects on fecundity, survival and behaviour. Compared to females without resource limitations, females experiencing restricted conditions for oviposition had reduced fecundity early in life but increased fecundity when resources became plentiful (relative to both the previous phase and the control group) at the expense of longevity.

View Article and Find Full Text PDF

Lignin in Bio-Based Liquid Crystalline Network Material with Potential for Direct Ink Writing.

ACS Appl Bio Mater

September 2020

Institute of Earth and Environmental Science, Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg 79085, Germany.

The flow-induced supramolecular arrangement, or band texture, present in water-soluble anisotropic films prepared from blend solutions of hydroxypropyl cellulose and organosolv lignin is locked via esterification with bio-based polycarboxylic acids. Subsequent to shear casting of the blend solutions, the chemical cross-linking with citric acid-based cross-linkers and a dimerized fatty acid yields water-insoluble, anisotropic films prone to swelling in water. The liquid crystalline networks are analyzed by means of polarized optical microscopy, tensile testing, Fourier transform infrared, and swelling experiments.

View Article and Find Full Text PDF

Lignin valorization has been scarcely considered in the form of liquid crystalline polymer blends. Recently, a stabilizing effect of organosolv lignin (OSL) on the oriented mesophase of hydroxypropyl cellulose (HPC) was observed and related to drastic improvements in tensile properties of the blends. With a view to elucidating this relaxation phenomenon, different molecular weight fractions and derivatives of organosolv lignin are synthesized, blended in solution with the liquid crystalline cellulosic polymer and analyzed in regard to their effect on the microstructural evolution of shear-aligned HPC chains.

View Article and Find Full Text PDF

Lignin-Assisted Stabilization of an Oriented Liquid Crystalline Cellulosic Mesophase, Part A: Observation of Microstructural and Mechanical Behavior.

Biomacromolecules

March 2020

Institute of Earth and Environmental Science, Faculty of Environment and Natural Resources, Chair of Forest Biomaterials, University of Freiburg, 79085 Freiburg Germany.

Liquid crystalline polymer blends containing lignin have been scarcely studied in the literature, albeit demonstrating potential for the design of high-performance lignin-based materials. In this study, organosolv lignin is blended in solution with hydroxypropyl cellulose (HPC), a lyotropic cellulose derivative, and its impact on the dynamics of the cellulosic liquid crystalline mesophase is investigated. Rheological measurements and rheo-optical investigations under crossed polarizers reveal that lignin enhances the persistence of the shear-induced orientation of the cellulosic macromolecules.

View Article and Find Full Text PDF

Mountains play a key role in the provision of nature's contributions to people (NCP) worldwide that support societies' quality of life. Simultaneously, mountains are threatened by multiple drivers of change. Due to the complex interlinkages between biodiversity, quality of life and drivers of change, research on NCP in mountains requires interdisciplinary approaches.

View Article and Find Full Text PDF

Continental rift systems form by propagation of isolated rift segments that interact, and eventually evolve into continuous zones of deformation. This process impacts many aspects of rifting including rift morphology at breakup, and eventual ocean-ridge segmentation. Yet, rift segment growth and interaction remain enigmatic.

View Article and Find Full Text PDF

Comparison of stage/discharge rating curves derived from different recording systems: Consequences for streamflow data and water management in a Mediterranean island.

Sci Total Environ

May 2019

Mediterranean Ecogeomorphological and Hydrological Connectivity Research Team (http://medhycon.uib.cat), Department of Geography, University of the Balearic Islands, Carretera de Valldemossa Km 7.5, 07122 Palma, Spain; Institute of Agro-Environmental and Water Economy Research -INAGEA, University of the Balearic Islands, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain. Electronic address:

Obtaining representative hydrometric values is essential for characterizing extreme events, hydrological dynamics and detecting possible changes on the long-term hydrology. Reliability of streamflow data requires a temporal continuity and a maintenance of the gauging stations, which data are affected by epistemic and random sources of error. An assessment of discharge meterings' and stage-discharge rating curves' uncertainties were carried out by comparing the accuracy of the measuring instruments of two different hydrometric networks (i.

View Article and Find Full Text PDF

Climatic observables are often correlated across long spatial distances, and extreme events, such as heatwaves or floods, are typically assumed to be related to such teleconnections. Revealing atmospheric teleconnection patterns and understanding their underlying mechanisms is of great importance for weather forecasting in general and extreme-event prediction in particular, especially considering that the characteristics of extreme events have been suggested to change under ongoing anthropogenic climate change. Here we reveal the global coupling pattern of extreme-rainfall events by applying complex-network methodology to high-resolution satellite data and introducing a technique that corrects for multiple-comparison bias in functional networks.

View Article and Find Full Text PDF

The original version of this Article contained an error in the author affiliations. Affiliation 5 incorrectly read 'Tyumen State Oil and Gas University, Tyumen, Tyument. Oblast, Russian Federation, 625000'.

View Article and Find Full Text PDF

Local observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014.

View Article and Find Full Text PDF

Background: Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media.

Objectives: The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area.

View Article and Find Full Text PDF

The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO in mofette fields. The Hartoušov mofette field shows a daily CO flux of 23-97 tons of CO released over an area of 0.

View Article and Find Full Text PDF

Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions.

View Article and Find Full Text PDF

Transverse dispersion, or tracer spreading orthogonal to the mean flow direction, which is relevant e.g, for quantifying bio-degradation of contaminant plumes or mixing of reactive solutes, has been studied in the literature less than the longitudinal one. Inferring transverse dispersion coefficients from field experiments is a difficult and error-prone task, requiring a spatial resolution of solute plumes which is not easily achievable in applications.

View Article and Find Full Text PDF

Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials.

View Article and Find Full Text PDF