9 results match your criteria: "Institute of Cytology of RAS[Affiliation]"

Reorganization of Cell Compartmentalization Induced by Stress.

Biomolecules

October 2022

Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia.

The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space.

View Article and Find Full Text PDF

Stress is an inevitable part of life. An organism is exposed to multiple stresses and overcomes their negative consequences throughout its entire existence. A correlation was established between life expectancy and resistance to stress, suggesting a relationship between aging and the ability to respond to external adverse effects as well as quickly restore the normal regulation of biological processes.

View Article and Find Full Text PDF

In this report, we present implementation and validation of machine-learning classifiers for distinguishing between cell types (HeLa, A549, 3T3 cell lines) and states (live, necrosis, apoptosis) based on the analysis of optical parameters derived from cell phase images. Validation of the developed classifier shows the accuracy for distinguishing between the three cell types of about 93% and between different cell states of the same cell line of about 89%. In the field test of the developed algorithm, we demonstrate successful evaluation of the temporal dynamics of relative amounts of live, apoptotic and necrotic cells after photodynamic treatment at different doses.

View Article and Find Full Text PDF

Temporal dependence of changes in the morphological characteristics of cells of two cultured lines of cancer origin, HeLa and A549, induced by photodynamic treatment with Radachlorin photosensitizer, have been monitored using digital holographic microscopy during first two hours after short-term irradiation. The observed post-treatment early dynamics of the phase shift in the transmitted wavefront indicated several distinct scenarios of cell behavior depending upon the irradiation dose. In particular the phase shift increased at low doses, which can be associated with apoptosis, while at high doses it decreased, which can be associated with necrosis.

View Article and Find Full Text PDF

Epithelial Sodium Channels (ENaCs) are expressed in different organs and tissues, particularly in the cortical collecting duct (CCD) in the kidney, where they fine tune sodium reabsorption. Dynamic rearrangements of the cytoskeleton are one of the common mechanisms of ENaC activity regulation. In our previous studies, we showed that the actin-binding proteins cortactin and Arp2/3 complex are involved in the cytoskeleton-dependent regulation of ENaC and that their cooperative work decreases a channel's probability of remaining open; however, the specific mechanism of interaction between actin-binding proteins and ENaC is unclear.

View Article and Find Full Text PDF

Recently, we identified the yeast red pigment (RP), a polymer of 1-(5'-Phosphoribosyl)-5-aminoimidazole, as a novel potential anti-amyloid agent for the therapy of neurodegenerative diseases. The purpose of this study was to further validate RP for treatment of Parkinson's disease (PD) and to clarify molecular mechanisms involved in the reduction of amyloid cytotoxicity. We investigated RP effects in vivo using Saccharomyces cerevisiae and Drosophila melanogaster PD models.

View Article and Find Full Text PDF

Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells.

Biochem Biophys Res Commun

April 2016

Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064, Russia; St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034, Russia; Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, St.Petersburg, 195251, Russia. Electronic address:

Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis.

View Article and Find Full Text PDF

The effect of yeast red pigment on amyloid-β (Aβ) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aβ-GFP aggregates.

View Article and Find Full Text PDF

BASP1 (also known as CAP-23 and NAP-22) is a brain abundant myristoylated protein localized at the inner surface of the presynaptic plasma membrane. Emerging evidence suggests that BASP1 is critically involved in various cellular processes, in particular, in the accumulation of phosphatidylinositol-4,5-diphosphate (PIP(2)) in lipid raft microdomains. We have recently shown that BASP1 forms heterogeneously-sized oligomers and higher aggregates with an outward similarity to oligomers and protofibrils of amyloid proteins.

View Article and Find Full Text PDF