14 results match your criteria: "Institute of Complex Systems 7[Affiliation]"

A bench-top molding method for the production of cell-laden fibrin micro-fibers with longitudinal topography.

J Biomed Mater Res B Appl Biomater

May 2020

Department of Biohybrid & Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.

Tissue-engineered constructs have great potential in many intervention strategies. In order for these constructs to function optimally, they should ideally mimic the cellular alignment and orientation found in the tissues to be treated. Here we present a simple and reproducible method for the production of cell-laden pure fibrin micro-fibers with longitudinal topography.

View Article and Find Full Text PDF

Considering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g.

View Article and Find Full Text PDF

In mammalian cells, actin, microtubules, and various types of cytoplasmic intermediate filaments respond to external stretching. Here, we investigated the underlying processes in endothelial cells plated on soft substrates from silicone elastomer. After cyclic stretch (0.

View Article and Find Full Text PDF

Adherent cells exert traction forces on to their environment which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures during developmental morphogenesis. Traction force microscopy (TFM) enables the measurement of traction forces on an elastic substrate and thereby provides quantitative information on cellular mechanics in a perturbation-free fashion. In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods.

View Article and Find Full Text PDF

Living animal cells are strongly influenced by the mechanical properties of their environment. To model physiological conditions ultrasoft cell culture substrates, in some instances with elasticity (Young's modulus) of only 1 kPa, are mandatory. Due to their long shelf life PDMS-based elastomers are a popular choice.

View Article and Find Full Text PDF

Measuring cellular traction forces on non-planar substrates.

Interface Focus

October 2016

Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.

Animal cells use traction forces to sense the mechanics and geometry of their environment. Measuring these traction forces requires a workflow combining cell experiments, image processing and force reconstruction based on elasticity theory. Such procedures have already been established mainly for planar substrates, in which case one can use the Green's function formalism.

View Article and Find Full Text PDF

Microstructure of Sheared Entangled Solutions of Semiflexible Polymers.

Polymers (Basel)

September 2016

Institut für theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany.

We study the influence of finite shear deformations on the microstructure and rheology of solutions of entangled semiflexible polymers theoretically and by numerical simulations and experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict that large finite shear deformations strongly affect the average tube width and curvature, thereby exciting considerable restoring stresses. In contrast, the associated shear alignment is moderate, with little impact on the average tube parameters, and thus expected to be long-lived and detectable after cessation of shear.

View Article and Find Full Text PDF

We probe the bending fluctuations of bio-membranes using highly deflated giant unilamellar vesicles (GUVs) bound to a substrate by a weak potential arising from generic interactions. The substrate is either homogeneous, with GUVs bound only by the weak potential, or is chemically functionalized with a micro-pattern of very strong specific binders. In both cases, the weakly adhered membrane is seen to be confined at a well-defined distance above the surface while it continues to fluctuate strongly.

View Article and Find Full Text PDF

Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes.

View Article and Find Full Text PDF

Crowding of receptors induces ring-like adhesions in model membranes.

Biochim Biophys Acta

November 2015

Institut für Theoretische Physik and Cluster of Excellence: Engineering of Advanced Materials, Friedrich Alexander Universität Erlangen-Nürnberg, 91052 Erlangen, Germany; Insitut Ruđer Bošković, 10000 Zagreb, Croatia. Electronic address:

The dynamics of formation of macromolecular structures in adherent membranes is a key to a number of cellular processes. However, the interplay between protein reaction kinetics, diffusion and the morphology of the growing domains, governed by membrane mediated interactions, is still poorly understood. Here we show, experimentally and in simulations, that a rich phase diagram emerges from the competition between binding, cooperativity, molecular crowding and membrane spreading.

View Article and Find Full Text PDF

Association rates of membrane-coupled cell adhesion molecules.

Biophys J

December 2014

Institut für Theoretische Physik and Cluster of Excellence Engineering of Advanced Materials, Friedrich-Alexander-Universität, Erlangen, Germany; Institute Ruđer Bošković, Division of Physical Chemistry, Zagreb, Croatia. Electronic address:

Thus far, understanding how the confined cellular environment affects the lifetime of bonds, as well as the extraction of complexation rates, has been a major challenge in studies of cell adhesion. Based on a theoretical description of the growth curves of adhesion domains, we present a new (to our knowledge) method to measure the association rate k(on) of ligand-receptor pairs incorporated into lipid membranes. As a proof of principle, we apply this method to several systems.

View Article and Find Full Text PDF

Dynamic force spectroscopy was used to test force-induced dissociation of the complex between the integrin α7β1 and the bacterial protein invasin. Both proteins were used in truncated forms comprising the respective binding sites. Using the biomembrane force-probe, the bond system was exposed to 14 different loading rates ranging from 18 pN/s to 5.

View Article and Find Full Text PDF

Recognition of external mechanical signals by cells is an essential process for life. One important mechanical signal experienced by various cell types, e.g.

View Article and Find Full Text PDF