218 results match your criteria: "Institute of Chemistry of Organometallic Compounds[Affiliation]"

The covalent bonding framework of crystalline single-bonded cubic AsN, recently synthesized under high pressure and high temperature conditions in a laser-heated diamond anvil cell, is here studied by means of density functional theory calculations and compared to single crystal X-ray diffraction data. The precise localization of the nonbonding electron lone pairs and the determination of their distances and orientations are related to the presence of characteristic structural motifs and space regions of the unit cell dominated by repulsive electronic interactions, with the relative orientation of the electron lone pairs playing a key role in minimizing the energy of the structure. We find that the vibrational modes associated with the expression of the lone pairs are strongly localized, an observation that may have implications for the thermal conductivity of the compound.

View Article and Find Full Text PDF

Injectable gelling methylcellulose-based hydrogels for bone tissue regeneration.

J Mater Chem B

May 2024

Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Injectable bone substitutes (IBSs) represent a compelling choice for bone tissue regeneration, as they can be exploited to optimally fill complex bone defects in a minimally invasive manner. In this context, gelling methylcellulose (MC) hydrogels may be engineered to be free-flowing injectable solutions at room temperature and gels upon exposure to body temperature. Moreover, incorporating a suitable inorganic phase can further enhance the mechanical properties of MC hydrogels and promote mineralization, thus assisting early cell adhesion to the hydrogel and effectively guiding bone tissue regeneration.

View Article and Find Full Text PDF

The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory.

View Article and Find Full Text PDF

Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (FeO) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides.

View Article and Find Full Text PDF

The current investigation emphasizes the use of fucoidan and sericin as dual-role biomaterials for obtaining novel nanohybrid systems for the delivery of diclofenac sodium (DS) and the potential treatment of chronic inflammatory diseases. The innovative formulations containing 4 mg/ml of fucoidan and 3 mg/ml of sericin showed an average diameter of about 200 nm, a low polydispersity index (0.17) and a negative surface charge.

View Article and Find Full Text PDF

This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages.

View Article and Find Full Text PDF

In this study, the deep learning algorithm of Convolutional Neural Network long short-term memory (CNN-LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN-LSTM architecture includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted laser induced breakdown spectroscopy helped achieve excellent performance.

View Article and Find Full Text PDF

Non-coding RNAs (ncRNAs), generated from nonprotein coding DNA sequences, constitute 98-99% of the human genome. Non-coding RNAs encompass diverse functional classes, including microRNAs, small interfering RNAs, PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and long non-coding RNAs. With critical involvement in gene expression and regulation across various biological and physiopathological contexts, such as neuronal disorders, immune responses, cardiovascular diseases, and cancer, non-coding RNAs are emerging as disease biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Background: Primary sclerosing cholangitis (PSC) is a rare chronic inflammatory liver disease characterized by biliary strictures and cholestasis. Due to the lack of effective serological indicators for diagnosis and prognosis, in the present study, we examined the potentiality of the saliva proteome to comprehensively screen for novel biomarkers.

Methods: Saliva samples of PSC patients and healthy controls were processed and subsequently analyzed using a liquid chromatography-tandem mass spectrometry technique.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the charge-transport properties of conjugated polymers, particularly focusing on ambipolar semiconductors that allow for similar mobility of both electrons and holes.
  • Using field-induced electron spin resonance spectroscopy, the researchers compare the spin relaxation behavior of electron and hole polarons in three different ambipolar conjugated polymers.
  • The results reveal that at lower temperatures, electrons relax more slowly than holes, while at higher temperatures, the trend reverses, indicating a complex interaction between charge and structural dynamics influenced by temperature.
View Article and Find Full Text PDF

High-pressure and high-temperature synthesis of crystalline Sb N.

Angew Chem Int Ed Engl

March 2024

ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy.

A chemical reaction between Sb and N was induced under high-pressure (32-35 GPa) and high-temperature (1600-2200 K) conditions, generated by a laser heated diamond anvil cell. The reaction product was identified by single crystal synchrotron X-ray diffraction at 35 GPa and room temperature as crystalline antimony nitride with Sb N stoichiometry and structure belonging to orthorhombic space group Cmc2 . Only Sb-N bonds are present in the covalent bonding framework, with two types of Sb atoms respectively forming SbN distorted octahedra and trigonal prisms and three types of N atoms forming NSb distorted tetrahedra and NSb trigonal pyramids.

View Article and Find Full Text PDF

The behavior of hydrogen bonds under extreme pressure is still not well understood. Until now, the shift of the stretching vibration band of the X-H group (X = the donor atom) in infrared spectra has been attributed to the variation in the length of the covalent X-H bond. Herein, we combined infrared spectroscopy and X-ray diffraction experimental studies of two H-bonded liquid hexane derivatives, i.

View Article and Find Full Text PDF

Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach.

View Article and Find Full Text PDF

Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions.

Materials (Basel)

November 2023

Centre for Hybrid and Organic Solar Energy (C.H.O.S.E.), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.

Among the emerging photovoltaic (PV) technologies, Dye-Sensitized Solar Cells (DSSCs) appear especially interesting in view of their potential for unconventional PV applications. In particular, DSSCs have been proven to provide excellent performances under indoor illumination, opening the way to their use in the field of low-power devices, such as wearable electronics and wireless sensor networks, including those relevant for application to the rapidly growing Internet of Things technology. Considering the low intensity of indoor light sources, efficient light capture constitutes a pivotal factor in optimizing cell efficiency.

View Article and Find Full Text PDF

Pyrolysis in an inert atmosphere is a widely applied route to convert tannery wastes into reusable materials. In the present study, the Cr(III) conversion into the toxic hexavalent form in the pyrolyzed tannery waste referred to as KEU was investigated. Ageing experiments and leaching tests demonstrated that the Cr(III)-Cr(VI) inter-conversion occurs in the presence of air at ambient temperature, enhanced by wet environmental conditions.

View Article and Find Full Text PDF

A novel analytical method for the simultaneous gas chromatography-mass spectrometry (GC-MS) determination of methionine and selenomethionine in food samples is described. Samples were digested with methanesulfonic acid in a closed vessel without the need for reflux. A single step derivatization using triethyloxonium tetrafluoroborate was optimized for the conversion of the analytes into their ethyl derivatives, followed by their extraction with hexane and GC-MS analysis.

View Article and Find Full Text PDF

Charge polarization at the membrane interface is a fundamental process in biology. Despite the lower concentration compared to the abundant monovalent ions, the relative abundance of divalent cations (Ca, Mg, Zn, Fe, Cu) in particular spaces, such as the neuron synapse, raised many questions on the possible effects of free multivalent ions and of the required protection of membranes by the eventual defects caused by the free forms of the cations. In this work, we first applied a recent realistic model of divalent cations to a well-investigated model of a polar lipid bilayer, di-myristoyl phosphatidyl choline (DMPC).

View Article and Find Full Text PDF

We have combined reactive molecular dynamics simulations with principal component analysis to provide a clearer view of the interactions and motion of the CO molecules inside a metal-organic framework and the movements of the MOF components that regulate storage, adsorption, and diffusion of the guest species. The tens-of-nanometer size of the simulated model, the capability of the reactive force field tuned to reproduce the inorganic-organic material confidently, and the unconventional use of essential dynamics have effectively disclosed the gate-opening/closing phenomenon, possible coordinations of CO at the metal centers, all the diffusion steps inside the MOF channels, the primary motions of the linkers, and the effects of their concerted rearrangements on local CO relocations.

View Article and Find Full Text PDF

Reduced Tiara-like Palladium Complex for Suzuki Cross-Coupling Reactions.

Chemistry

November 2023

Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy.

The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading.

View Article and Find Full Text PDF

In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-CN) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (HO) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 μM HO in 7 h from alkaline water and up to 1800 μM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance.

View Article and Find Full Text PDF

Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes.

View Article and Find Full Text PDF

Graphitic Carbon Nitride as Photocatalyst for the Direct Formylation of Anilines.

Chemistry

October 2023

Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.

The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines.

View Article and Find Full Text PDF

We investigate the structure and dynamics of a zinc oxide nanocarrier loaded with Carfilzomib, an epoxyketone proteasome inhibitor developed for treating multiple myeloma. We demonstrate that, even though both bare and functionalized zinc oxide supports have been used for drug delivery, their interactions with the reactive functional groups of the ligands could be detrimental. This is because pharmacophores like α',β'-epoxyketones should preserve the groups required for the drug activity and be capable of leaving the vehicle at the target site.

View Article and Find Full Text PDF

Photoactivatable Heptamethine-Based Carbonic Anhydrase Inhibitors Leading to New Anti-Antibacterial Agents.

Int J Mol Sci

June 2023

Neurofarba Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.

With the aim to propose innovative antimicrobial agents able to not only selectively inhibit bacterial carbonic anhydrases (CAs) but also to be photoactivated by specific wavelengths, new heptamethine-based compounds decorated with a sulfonamide moiety were synthesized by means of different spacers. The compounds displayed potent CA inhibition and a slight preference for bacterial isoforms. Furthermore, minimal inhibitory and bactericidal concentrations and the cytotoxicity of the compounds were assessed, thus highlighting a promising effect under irradiation against .

View Article and Find Full Text PDF

The mechanisms controlling the generation of PbH by reaction of inorganic Pb(II) with aqueous NaBH were investigated both in the presence and in the absence of the additive KFe(CN). For the first time PbH has been identified in analytical chemical vapor generation (CVG) by using gas chromatographic mass spectrometry (GC-MS), which allows the use of deuterium labelled experiments. In the absence of the additive, under reaction conditions typically employed for trace lead determination by CVG, Pb(II) is converted to solid species and no volatile lead species can be detected by either atomic or mass spectrometry for Pb(II) concentration up to 100 mg L.

View Article and Find Full Text PDF