676 results match your criteria: "Institute of Chemical Technologies[Affiliation]"

Adhesion at the interface between dissimilar materials in the semiconductor industry is an important topic, but reliable quantitative methods for strongly adhesive or highly plastic layers are hardly available. This study aims to investigate the suitability of the cross-sectional nanoindentation (CSN) method for determination of the critical energy release rate of thin film stacks in the presence of a polyimide layer as a representative structure for such a case. For this purpose, the adhesion of a deliberately weakened Si/SiO interface in a Si/SiO/Al/SiN/polyimide stack is examined by systematic variation of the experimental parameters.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer.

View Article and Find Full Text PDF
Article Synopsis
  • - Laser-based mid-IR photothermal spectroscopy (PTS) is a rapid and sensitive analytical method that utilizes advanced laser technology to capture the absorption characteristics of various materials, such as liquids or solids.
  • - This study utilizes an external cavity quantum cascade laser (EC-QCL) to analyze a thin film of polymethyl methacrylate (PMMA) on a silicon nitride micro-ring resonator, demonstrating its effectiveness in creating an on-chip photothermal sensor.
  • - The research highlights the optimal alignment and focusing techniques for the laser setup, showing that PTS can lead to compact, efficient sensors suitable for real-time monitoring in industrial applications.
View Article and Find Full Text PDF

Composite flat-sheet membranes functionalized with imidazolium-based ionic liquids (ILs) grafted to poly(vinyl alcohol)/glutaraldehyde as a catalytic layer were developed to enhance the esterification between -butanol and acetic acid. The functionalized membranes were produced dip-coating commercial pervaporation membranes, and two distinct Brønsted-acidic ILs with an imidazolium-based cation and different (hydrogen sulfate [HSO] or bromide [Br]) anions were compared. Compact, 12 μm-thick, defect-free catalytic layers were observed on top of the pervaporation membrane supports, and the determined penetration depth of the ILs confirmed their presence in the upper part of the coating.

View Article and Find Full Text PDF

Controlling polymer-metal adhesion is critical in ensuring that materials can be cleanly separated during production processes without residue, which is crucial for various industrial applications. Accurately characterizing adhesion on industrial-grade surfaces is complex due to factors like surface roughness and actual contact area between surfaces and the polymer. In this study, we quantified the adhesive behavior of stainless-steel samples with varying surface treatments against a polymer using the surface forces apparatus (SFA) in reflection geometry, as well as X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Cancer metastasis is a major contributor to patient morbidity and mortality, yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs.

View Article and Find Full Text PDF

Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach.

View Article and Find Full Text PDF

The link between amyloid β and ferroptosis pathway in Alzheimer's disease progression.

Cell Death Dis

October 2024

Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands.

Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis.

View Article and Find Full Text PDF

With the growing necessity of achieving carbon neutrality in the industrial sector, the catalytic hydrogenation of carbon dioxide into methanol has been widely considered one of the key strategies for the utilization of captured CO. For this reason, the development of alternative catalysts such as ZnZrO has attracted considerable interest, given its superior stability and versatility in comparison to the conventional Cu-based materials. In this work, ZnZrO has been produced by a hydrothermal synthesis method at varied synthesis pH between 7 and 10 and a positive association between pH and catalytic CO conversion is observed.

View Article and Find Full Text PDF

Alignment tolerant coupling interfaces are an important feat for mid-IR waveguides when moving closer to real-world sensing applications, as they allow for an easy and fast replacement of waveguides. In this work, we demonstrate the alignment tolerant behavior of a germanium-on-silicon trenched waveguide platform with monolithically integrated microlenses using backside coupling of an expanded beam for evanescent field sensing between 6.5 and 7.

View Article and Find Full Text PDF

In the first trimester of pregnancy the human placenta grows rapidly, making it sensitive to changes in the intrauterine environment. To test whether exposure to an environment in utero often associated with obesity modifies placental proteome and function, we performed untargeted proteomics (LC-MS/MS) in placentas from 19 women (gestational age 35-48 days, i.e.

View Article and Find Full Text PDF

Cationic surfactants are widely used as corrosion inhibitors for industrial tubings and pipelines. They protect the surface of steel pipes through a film-forming mechanism, providing both anodic and cathodic inhibition. To improve the efficiency of the corrosion protection, it is essential to understand the interactions between the surfactants and metal surfaces.

View Article and Find Full Text PDF

Photocatalytic production of CO from CO has the potential for safe and atom-economic production of feedstock chemicals carbonylation chemistry. We developed novel ionic liquid-based polymeric materials through radical copolymerisation of 1-butyl-3-vinylimidazolium chloride and photocatalytically active Re- and Ru-complexes that serve as the CO reduction catalyst and photosensitiser, respectively. The crosslinked polymeric framework allows for the facile immobilisation of molecular organometallic complexes for use as heterogenised catalysts; moreover, the involved imidazolium core units co-catalyze the reduction of CO covalent interaction.

View Article and Find Full Text PDF

Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g.

View Article and Find Full Text PDF

Correlative imaging of cutaneous tumors provides additional information to the standard histopathologic examination. However, the joint progress in the establishment of analytical techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in clinical practice is still limited. Their combination provides complementary information as it is also shown in our study in terms of major biotic (Ca, Mg, and P) and trace (Cu and Zn) elements.

View Article and Find Full Text PDF

In this work, we show how the activity states of bimetallic Ni-Fe catalysts exsolved from NdCaFeNiO (NCFNi) can be influenced electrochemically. The NCFNi parent oxide was employed in the form of thin film mixed conducting model electrodes, which were operated in a humid hydrogen atmosphere. By precisely controlling the oxygen chemical potential in the parent oxide electrode applying an electrochemical polarisation, we managed to selectively exsolve Ni nanoparticles from the perovskite lattice and study their catalytic activity switching characteristics.

View Article and Find Full Text PDF

Efficiency of acetate-based isopropanol synthesis in Escherichia coli W is controlled by ATP demand.

Biotechnol Biofuels Bioprod

August 2024

Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.

Background: Due to increasing ecological concerns, microbial production of biochemicals from sustainable carbon sources like acetate is rapidly gaining importance. However, to successfully establish large-scale production scenarios, a solid understanding of metabolic driving forces is required to inform bioprocess design. To generate such knowledge, we constructed isopropanol-producing Escherichia coli W strains.

View Article and Find Full Text PDF

The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful.

View Article and Find Full Text PDF

Towards a circular economy - Repurposing side streams from the potato processing industry by Chlorella vulgaris.

J Environ Manage

August 2024

Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Wien, Austria. Electronic address:

Common wastewater treatment strategies in the food industry do not include efficient remediation strategies for nitrogen, phosphorous and organic carbon. Incorporating microalgae in water treatment plants is rising in popularity because of their high nutrient and trace element uptake driven by light. In this study, four different side streams from an Austrian potato processing company have been screened for their applicability of microalgal cultivation.

View Article and Find Full Text PDF

Our studies toward the total synthesis of the natural product euphosalicin () are presented. Different approaches targeting key intermediates are described, the synthesis of which includes findings on asymmetric dihydroxylations and ring-closing enyne metatheses (RCEYM). Their connection allowed the isolation of highly advanced precursors for studies on macrocyclizations.

View Article and Find Full Text PDF

We demonstrated, for the first time, micro-ring resonator assisted photothermal spectroscopy measurement of a gas phase sample. The experiment used a telecoms wavelength probe laser that was coupled to a silicon nitride photonic integrated circuit using a fibre array. We excited the photothermal effect in the water vapor above the micro-ring using a 1395 nm diode laser.

View Article and Find Full Text PDF

Multiple thick film samples of the AgcPd1-c solid solution were prepared using physical vapour deposition over a borosilicate glass substrate. This synthesis technique allows continuous variation in stoichiometry, while the distribution of silver or palladium atoms retains the arrangement into an on-average periodic lattice with smoothly varying unit cell parameters. The alloy concentration and geometry were measured over a set of sample points, respectively, via energy-dispersive X-ray spectroscopy and via X-ray diffraction.

View Article and Find Full Text PDF

Mid-Infrared Dispersion Spectroscopy as a Tool for Monitoring Time-Resolved Chemical Reactions on the Examples of Enzyme Kinetics and Mutarotation of Sugars.

Appl Spectrosc

September 2024

Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria.

Ongoing technological advancements in the field of mid-infrared (MIR) spectroscopy continuously yield novel sensing modalities, offering capabilities beyond traditional techniques like Fourier transform infrared spectroscopy (FT-IR). One such advancement is MIR dispersion spectroscopy, utilizing a tunable quantum cascade laser and Mach-Zehnder interferometer for liquid-phase analysis. Our study assesses the performance of a custom MIR dispersion spectrometer at its current development stage, benchmarks its performance against FT-IR, and validates its potential for time-resolved chemical reaction monitoring.

View Article and Find Full Text PDF