143 results match your criteria: "Institute of Chemical Sciences and Technologies "Giulio Natta"[Affiliation]"

Surface Composition Impacts Selectivity of ZnTe Photocathodes in Photoelectrochemical CO Reduction Reaction.

ACS Energy Lett

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.

View Article and Find Full Text PDF

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

The screening of plant-derived compounds with anti-cancer properties is a promising strategy to meet the growing need for new, safe and effective anti-cancer drugs. Justicidin B is a plants secondary metabolite that displays anti-cancer properties in several tumor cells. Therefore, it represents a good candidate.

View Article and Find Full Text PDF

Building on the success of our first Special Issue, we are pleased to present this second collection dedicated to the multifaceted world of composite materials [...

View Article and Find Full Text PDF

In recent years, the use of MXenes, a class of two-dimensional materials composed of transition metal carbides, nitrides, or carbonitrides, has shown significant promise in the field of skin wound healing. This review explores the multifunctional properties of MXenes, focusing on their electrical conductivity, photothermal effects, and biocompatibility in this field. MXenes have been utilized to develop advanced wound healing devices such as hydrogels, patches, and smart bandages for healing examination.

View Article and Find Full Text PDF

The global shift towards using biomass for biofuels and chemicals is accelerating due to increasing environmental concerns and geopolitical strategies. This study investigates a biorefinery model using citrus-processing-waste, specifically citrus pulp, to produce high-value products for various industries, including cosmetics, pharmaceuticals, flavours, fragrances, and food packaging. In Italy, particularly Sicily region, citrus processing generates significant amounts of waste, often improperly disposed of, contributing to environmental problems.

View Article and Find Full Text PDF

Xenografts are commonly used for bone regeneration in dental and orthopaedic domains to repair bone voids and other defects. The first-generation xenografts were made through sintering, which deproteinizes them and alters their crystallinity, while later xenografts are produced using cold-temperature chemical treatments to maintain the structural collagen phase. However, the impact of collagen and the crystalline phase on physicochemical properties have not been elucidated.

View Article and Find Full Text PDF

Corrigendum to targeted therapy and deep learning insights into microglia modulation for spinal cord injury.

Mater Today Bio

August 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy.

[This corrects the article DOI: 10.1016/j.mtbio.

View Article and Find Full Text PDF

Introduction: Semen cryopreservation is the most popular practice for semen production for artificial insemination and fertilization in cattle. The Seminal plasma contains extracellular vesicles (spEVs) which modulate sperm viability and function during oocyte fecundation. The study of spEVs in frozen-thawed semen doses may yield novel indicators for predicting bull fertility, but the presence of the semen extender may hinder molecular profiling of spEVs.

View Article and Find Full Text PDF

Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells.

View Article and Find Full Text PDF

Recent advances and perspectives on intercalation layered compounds part 1: design and applications in the field of energy.

Dalton Trans

September 2024

Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.

Herein, initially, we present a general overview of the global financial support for chemistry devoted to materials science, specifically intercalation layered compounds (ILCs). Subsequently, the strategies to synthesise these host structures and the corresponding guest-host hybrid assemblies are exemplified on the basis of some families of materials, including pillared clays (PILCs), porous clay heterostructures (PCHs), zirconium phosphate (ZrP), layered double hydroxides (LDHs), graphite intercalation compounds (GICs), graphene-based materials, and MXenes. Additionally, a non-exhaustive survey on their possible application in the field of energy through electrochemical storage, mostly as electrode materials but also as electrolyte additives, is presented, including lithium technologies based on lithium ion batteries (LIBs), and beyond LiBs with a focus on possible alternatives such XIBs (X = Na (NIB), K (KIB), Al (AIB), Zn (ZIB), and Cl (CIB)), reversible Mg batteries (RMBs), dual-ion batteries (DIBs), Zn-air and Zn-sulphur batteries and supercapacitors as well as their relevance in other fields related to (opto)electronics.

View Article and Find Full Text PDF

Herein, the integration of SnO nanoparticles with two Zn(II) porphyrins─Zn(II) 5,10,15,20-tetraphenylporphyrin (ZnTPP) and its perfluorinated counterpart, Zn(II) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (ZnTPPF)─was investigated for the sensing of gaseous acetone at 120 °C, adopting three Zn-porphyrin/SnO weight ratios (1:4, 1:32, and 1:64). For the first time, we were able to provide evidence of the correlation between the materials' conductivity and these nanocomposites' sensing performances, obtaining optimal results with a 1:32 ratio for ZnTPPF/SnO and showcasing a remarkable detection limit of 200 ppb together with a boosted sensing signal with respect to bare SnO. To delve deeper, the combination of experimental data with density functional theory calculations unveiled an electron-donating behavior of both porphyrins when interacting with tin dioxide semiconductor, especially for the nonfluorinated one.

View Article and Find Full Text PDF

Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health.

Dalton Trans

September 2024

Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.

Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules.

View Article and Find Full Text PDF

Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive sarcomas that can arise both sporadically and in patients with the genetic syndrome Neurofibromatosis type 1 (NF1). Prognosis is dismal, as large dimensions, risk of relapse, and anatomical localization make surgery poorly effective, and no therapy is known. Hence, the identification of MPNST molecular features that could be hit in an efficient and selective way is mandatory to envision treatment options.

View Article and Find Full Text PDF

Targeted therapy and deep learning insights into microglia modulation for spinal cord injury.

Mater Today Bio

August 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano 20156, Italy.

Spinal cord injury (SCI) is a devastating condition that can cause significant motor and sensory impairment. Microglia, the central nervous system's immune sentinels, are known to be promising therapeutic targets in both SCI and neurodegenerative diseases. The most effective way to deliver medications and control microglial inflammation is through nanovectors; however, because of the variability in microglial morphology and the lack of standardized techniques, it is still difficult to precisely measure their activation in preclinical models.

View Article and Find Full Text PDF

Inhibitory activity of some short-chain aliphatic aldehydes on pheromone and ammonium carbonate-mediated attraction in olive fruit fly, Bactrocera oleae.

Pest Manag Sci

October 2024

Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria CREA DC-Centro di Ricerca Difesa e Certificazione, Florence, Italy.

Background: The olive fruit fly (OFF), Bactrocera oleae (Rossi), is the main insect pest of olive trees worldwide. Legislation limits to the use of some synthetic larvicidal insecticides is leading to the development of new control options for preventive control of adult flies. In the present study, the biological activity of four short-chain aliphatic aldehydes, namely hexanal, (E)-2-hexenal, heptanal and (E)-2-heptenal, previously reported as repellents to the OFF adults was investigated.

View Article and Find Full Text PDF

Novel Class of Crystal/Glass Ultrafine Nanolaminates with Large and Tunable Mechanical Properties.

ACS Appl Mater Interfaces

July 2024

Laboratoire des Sciences des Procédés et des Matériaux (LSPM), CNRS, Université Sorbonne Paris Nord, 93430 Villetaneuse, France.

The control of local heterogeneities in metallic glasses (MGs) represents an emerging field to improve their plasticity, preventing the propagation of catastrophic shear bands (SBs) responsible for the macroscopically brittle failure. To date, a nanoengineered approach aimed at finely tuning local heterogeneities controlling SB nucleation and propagation is still missing, hindering the potential to develop MGs with large and tunable strength/ductility balance and controlled deformation behavior. In this work, we exploited the potential of pulsed laser deposition (PLD) to synthesize a novel class of crystal/glass ultrafine nanolaminates (U-NLs) in which a ∼4 nm thick crystalline Al separates 6 and 9 nm thick ZrCu glass nanolayers, while reporting a high density of sharp interfaces and large chemical intermixing.

View Article and Find Full Text PDF

Facile Low-Temperature synthesis of novel carbon nitrides for efficient conversion of carbon dioxide into Value-Added chemicals.

J Colloid Interface Sci

November 2024

School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India. Electronic address:

The interest in using carbon nitrides (CN) for CO conversion has stimulated extensive research on CN synthesis. Herein, we report the synthesis of two novel CN materials using low-cost commercially available precursors at low temperatures in a short duration of time. Two CN materials, one derived from 5-amino tetrazole (named 4NZ-CN) and the other derived from 3, 5-diamino-1, 2, 4-triazole (named 3NZ-CN) precursors, are prepared by refluxing these precursors for 2 h at 100 °C.

View Article and Find Full Text PDF

Microbially influenced corrosion (MIC) is a potentially critical degradation mechanism for a wide range of materials exposed to environments that contain relevant microorganisms. The likelihood and rate of MIC are affected by microbiological, chemical, and metallurgical factors; hence, the understanding of the mechanisms involved, verification of the presence of MIC, and the development of mitigation methods require a multidisciplinary approach. Much of the recent focus in MIC research has been on the microbiological and chemical aspects, with less attention given to metallurgical attributes.

View Article and Find Full Text PDF

Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole () functionalized with an ethynyl group, , is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding.

View Article and Find Full Text PDF

Multiscale agent-based modeling frameworks have recently emerged as promising mechanobiological models to capture the interplay between biomechanical forces, cellular behavior, and molecular pathways underlying restenosis following percutaneous transluminal angioplasty (PTA). However, their applications are mainly limited to idealized scenarios. Herein, a multiscale agent-based modeling framework for investigating restenosis following PTA in a patient-specific superficial femoral artery (SFA) is proposed.

View Article and Find Full Text PDF

Objectives: The rise of antibiotic-resistant () poses a significant global health threat, urging the quest for novel antimicrobial solutions. We have discovered that the human hormone l-thyroxine has antibacterial properties. In order to explore its drugability we perform here the characterization of a series of l-thyroxine analogues and describe the structural determinants influencing their antibacterial efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Dystroglycan (DG) is a receptor made up of α- and β-DG subunits, and a specific mutation in the β-DG subunit is linked to muscle-eye-brain disease in humans.
  • In a mouse model with this mutation, many embryos do not survive to term, but those that do show normal early development but later develop muscle issues and changes in protein localization affecting the blood-brain barrier.
  • The mutant mice have reduced levels of DG proteins in muscle and brain, making them a valuable model for studying the effects of β-DG alterations and the underlying mechanisms of a related disease.
View Article and Find Full Text PDF