35,963 results match your criteria: "Institute of Chemical Kinetics & Combustion[Affiliation]"

The structures of solid dosage forms determine their release behaviors and are critical attributes for the design and evaluation of the solid dosage forms. Here, the 3D structures of doxazosin mesylate sustained-release tablets were parallelly assessed by micro-computed tomography (micro-CT). There were no significant differences observed in the release profiles between the RLD and the generic formulation in the conventional dissolution, but the generic preparation released slightly faster in media with ethanol during an alcohol-induced dose-dumping test.

View Article and Find Full Text PDF

Background: Local drug presentation made possible by drug-eluting depots provides benefits for a vast array of diseases, including cancer, microbial infection, and wound healing. Drug-eluting depots provide sustained drug release of therapeutics directly at disease sites with tunable kinetics, remove the need for drugs to access disease sites from circulation, and reduce the side effects associated with systemic therapy. Recently, we introduced an entirely novel approach to local drug presentation named Tissue-Reactive Anchoring Pharmaceuticals (TRAPs).

View Article and Find Full Text PDF

Colloidal substrate-facilitated synthesis of gold nanohelices.

J Colloid Interface Sci

December 2024

Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, PR China. Electronic address:

Helical nanostructures have unique optical and mechanical properties, yet their syntheses had always been quite challenging. Various symmetry-breaking mechanisms such as chiral templates, strain-restriction and asymmetric ligand-binding have been developed to induce the helical growth at nanoscale. In this work, with neither chiral ligands nor templates, gold (Au) nanohelices were synthesized via a facile wet-chemical method, through an asymmetric Active Surface Growth facilitated by colloidal silica nanoparticles (NPs).

View Article and Find Full Text PDF

Construction of spontaneous built-in electric field on heterointerface furnishing continuous efficient adsorption-directional migration-conversion of polysulfides.

J Colloid Interface Sci

November 2024

State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 510000, China. Electronic address:

Integrating sulfur with efficient electrocatalysts remains a pressing need in lithium-sulfur (Li-S) batteries for modulating the sluggish conversion kinetics and restricting the shuttle behavior of lithium polysulfides (LiPSs). Herein, a compact p-type FeO and n-type MoS heterostructure embedded on nitrogen-doped porous carbon (FeO-MoS-NPC-0.5) is meticulously constructed as dual-functional hosts that can facilitate continuous catalytic conversion of LiPSs.

View Article and Find Full Text PDF
Article Synopsis
  • * A machine learning model incorporating chemical mechanisms was developed to analyze two years of urban observations, helping to assess different contributions to HONO and infer important kinetic parameters.
  • * The study found that during summer, photolysis of nitric acid on surfaces is the major daytime source of HONO, highlighting the effectiveness of machine learning in understanding atmospheric chemistry.
View Article and Find Full Text PDF

Simultaneous Observation of the Anomerization and Reaction Rates of Enzymatic Dehydrogenation of Glucose-6-Phosphate by Dissolution DNP.

J Am Chem Soc

December 2024

Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France.

The hyperpolarization of biological samples using dissolution dynamic nuclear polarization (dDNP) has become an attractive method for the monitoring of fast chemical and enzymatic reactions using NMR by taking advantage of a large signal increase. This approach is actively developing but still needs key methodological breakthroughs to be used as an analytical method for the monitoring of complex networks of simultaneous metabolic pathways. In this article, we use the deceptively simple example of glucose-6-phosphate (G6P) oxidation reaction by the enzyme G6P dehydrogenase (G6PDH) to discuss some important methodological aspects of dDNP kinetic experiments, such as its robustness and its ability to provide repeatable results as well as the capacity of this time-resolved methodology to test kinetic models and hypotheses and to provide reliable parameter estimates.

View Article and Find Full Text PDF

A hybrid tau-leap for simulating chemical kinetics with applications to parameter estimation.

R Soc Open Sci

December 2024

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK.

We consider the problem of efficiently simulating stochastic models of chemical kinetics. The Gillespie stochastic simulation algorithm (SSA) is often used to simulate these models; however, in many scenarios of interest, the computational cost quickly becomes prohibitive. This is further exacerbated in the Bayesian inference context when estimating parameters of chemical models, as the intractability of the likelihood requires multiple simulations of the underlying system.

View Article and Find Full Text PDF

Background: Limited data are available on vitamin A kinetics and total body stores (TBS) in women. Such information can be obtained using compartmental modeling and retinol isotope dilution (RID).

Objectives: Objectives were to apply population-based ("super-subject") modeling to determine retinol kinetics in nonpregnant Ghanaian women of reproductive age and to use RID to predict TBS in the group and its individuals.

View Article and Find Full Text PDF

The naturally sluggish redox kinetics and limited utilization associated with the sulfur conversion in Zn/S electrochemistry hinder its real application. Herein, we report an phase reconstruction strategy that activates the catalytic activity of vanadium oxides for invoking redox-catalysis to manipulate reversible sulfur conversion. It was identified that the VO@C/S precursor derived from metal organic frameworks could be transformed into VO ·HO@C/S by a facile electrochemical induction process.

View Article and Find Full Text PDF

Guanidinium Substitution Improves Self-Healing and Photodamage Resilience of MAPbI.

J Phys Chem C Nanomater Interfaces

November 2024

Dept. of Molecular Chem. & Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.

Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX halide (=X) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A (and X) constituents are preferred for solar cells.

View Article and Find Full Text PDF

This study employs a combination of spectroscopic techniques, including absorption, photoluminescence (PL), time-resolved PL kinetics, and transient absorption measurements, to elucidate the dynamics of excited states of oleic acid (OA)-capped colloidal PbS quantum dots (QDs) in toluene with a mean size of approximately 3 nm. PL decay profiles were properly treated employing either fitting or fitting-free models to extract average decay lifetimes and lifetime distributions. Our findings highlight the profound impact of factors such as particle concentration, size, surface treatment, and the surrounding environment on the optical properties of PbS QDs.

View Article and Find Full Text PDF

Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel plasmonic sponge has been developed that enhances solar evaporation efficiency to 131% by utilizing advanced 3D nanostructures for better heat localization and full-solar-spectrum absorption.
  • * This 3D plasmonic sponge not only improves freshwater production but also serves as a versatile water purification tool for various types of contaminated water, potentially alleviating freshwater shortages.
View Article and Find Full Text PDF

Achieving efficient and stable hydrogen evolution reactions in alkaline conditions is crucial for hydrogen production. In this study, a RuIr/CoNC-P catalyst featuring RuIr alloys alongside P-doping and CoNx sites is developed. RuIr alloying optimizes the electronic structure between Ru and Ir, promoting electron transfer from Ru to Ir.

View Article and Find Full Text PDF

Hot electrons (HEs) represent out-of-equilibrium carriers that are capable of facilitating reactions which are inaccessible under conventional conditions. Despite the similarity of the HE process to catalysis, optimization strategies such as orbital alignment and adsorption kinetics have not received significant attention in enhancing the HE-driven reaction yield. Here, we investigate catalytic effects in HE-driven reactions using a compositional catalyst modification (CCM) approach.

View Article and Find Full Text PDF

Determination of melatonin by potentiometric stripping analysis using sensor based on boron-doped diamond electrodes.

Talanta

December 2024

Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ, 389 25, Vodnany, Czech Republic.

A three-electrode screen-printed sensor with heavily doped microcrystalline boron-doped diamond electrodes grown by chemical vapor deposition on alumina substrates was used to determine the concentration of melatonin by constant current potentiometric stripping analysis. This paper provides a detailed examination of the irreversible oxidation behavior of melatonin by cyclic voltammetry at a boron-doped diamond electrode. The relationship between the current response and the square root of the scan rate confirmed a diffusion-controlled oxidation process.

View Article and Find Full Text PDF

Bacopa monnieri juice (BMJ) is traditionally used, reported, and scientifically validated for memory enhancement. However, its efficacy against diabetes is less explored. The extreme bitterness of BMJ restricts its commercial applications.

View Article and Find Full Text PDF

α-amylase is responsible for shortening the shelf life of food by degrading starch and glycogen into maltose, disaccharides, and oligosaccharides. This study focuses on the effect of atmospheric cold plasma on the activity, stability, enzyme kinetics, and structural change for its application in α-amylase modifications. A reduction in the residual activity from 96.

View Article and Find Full Text PDF
Article Synopsis
  • * A new catalyst called FeMn-HNC is created using a NaCl-assisted pyrolysis method, featuring a hollow porous structure that enhances oxygen reduction reaction (ORR) activity and stability.
  • * When used in ZABs, FeMn-HNC significantly boosts performance, achieving a maximum power density of 223.1 mW/cm² and a specific capacity of 804.3 mAh/g, indicating a strong potential for improving ZAB technology.
View Article and Find Full Text PDF
Article Synopsis
  • Cortical condensates are transient structures that form in the actin cortex of oocytes and are rich in actin and N-WASP, forming through a phase separation process influenced by chemical kinetics.
  • The study reveals that N-WASP can undergo surface condensation on lipid bilayers, which is a key factor in the formation of these condensates.
  • The dynamics of condensate formation are regulated by a balance between their creation at the surface and the polymerization of actin, shedding light on the control of complex intracellular structures.
View Article and Find Full Text PDF

Despite the tremendous accomplishments of AlpaFold2/3 in predicting biomolecular structure, the protein folding problem remains unsolved in the sense that accurate atomistic models of how protein molecules fold into their native conformations from an unfolded ensemble are still elusive. Here, using chemical exchange saturation transfer (CEST) NMR experiments and a comprehensive four-state kinetic model of the folding trajectory of a 71 residue four-helix bundle FF domain from human HYPA/FBP11 we present an atomic resolution structure of a transiently formed intermediate, I2, that along with the structure of a second intermediate, I1, provides a description of the FF domain folding trajectory. By recording CEST profiles as a function of urea concentration the extent of compaction along the folding pathway is evaluated.

View Article and Find Full Text PDF

Enhancing Photoelectrochemical Water Oxidation Using Ferromagnetic Materials and Magnetic Fields.

J Am Chem Soc

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.

Article Synopsis
  • Photoelectrochemical (PEC) water splitting is an emerging method for hydrogen production, but its efficiency is hindered by issues like carrier recombination and slow water oxidation.
  • The study shows that adding a ferromagnetic coating (FeTiO) to a photoanode (BiVO) and using an external magnetic field enhances solar water oxidation performance by improving charge separation and catalytic efficiency.
  • The findings suggest that this magnetic field technique can be applied to other metal oxide photoanodes, indicating a new approach to boost PEC performance in nonmagnetic semiconductor materials.
View Article and Find Full Text PDF

Sodium metal anodes (SMA), featuring high energy content, low electrochemical potential and easy availability, are a compelling option for sustainable energy storage. However, notorious sodium dendrite and unstable solid-electrolyte interface (SEI) have largely retarded their widespread implantation. Herein, porous amorphous carbon nanofiber embedded with Bi nanoparticles in nanopores (Bi@NC) was rationally designed as a 3D host for SMA.

View Article and Find Full Text PDF

This study proposes the heterojunction photocatalyst, Sn-doped TiO/Ti-doped SnO (herein named SnTiO), as a promising alternative to pure TiO. SnTiO demonstrates improved light harvesting efficiency over TiO by generating longer-lived electron-hole (e-h) pairs, while also displaying a smaller band gap compared to pure TiO. Consequently, we show that it is a promising candidate for the photocatalytic oxidation (PCO) of As to the less toxic and more readily removable form As.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-sulfur (Li-S) batteries are gaining interest for their high energy density and eco-friendliness, but issues like the shuttle effect of lithium polysulfides (LiPSs) and inefficient sulfur use hinder their practical use.
  • A new catalyst, created from a metal-organic framework (MOF), has been developed to improve LiPSs management, enhancing both their immobilization and conversion in Li-S batteries.
  • Tests show that the new catalyst significantly boosts battery performance, achieving an initial discharge capacity of 1752.1 mAh/g and maintaining a high efficiency with minimal capacity decay over 1000 cycles.
View Article and Find Full Text PDF