35,953 results match your criteria: "Institute of Chemical Kinetics & Combustion[Affiliation]"

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

Effect of Drug-to-Protein Reaction Kinetics on the Results of Thermal Proteome Profiling.

Anal Chem

December 2024

V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia.

In this Letter, a two-term formalism for constructing protein solubility curves in thermal proteome profiling (TPP) is considered, which takes into account the efficiency of the drug-protein binding reaction. When the reaction is incomplete, this results in distortion of the otherwise sigmoidal shape of the curve after drug treatment, which is often observed in experiments. This distortion may be significant enough to disqualify the corresponding protein from the list of drug target candidates, thus negatively affecting the results of TPP data analysis.

View Article and Find Full Text PDF

Unconventional aspects in metal-embedded laser-induced graphene.

Chem Sci

December 2024

Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, California NanoSystems Institute, University of California, Los Angeles Los Angeles CA 90095 USA

Laser-induced graphene (LIG) has gained significant attention, with over 170 publications in 2023 alone. This surge in popularity is due to the unique advantages LIG offers over traditional thermal methods, such as fast, solvent-free, scalable production and its ability to scribe intricate patterns on various substrates, including heat-sensitive materials like plastics. In recent developments, metal-embedded LIG (M-LIG) has expanded the potential applications of LIG, particularly in energy storage, microelectronics, and sensing.

View Article and Find Full Text PDF

In this study, we introduce an synthesis technique for incorporating gold nanoparticles (AuNPs) into a magnetic nanocomposite made of glucosamine and alginate (GluN/Alg) ionotropic gelation. GluN acted as a reducing agent for gold ions, leading to the formation of AuNPs which embedded in the nanocomposite FeO@GluN/Alg. Analytical techniques confirmed the crystallite structure of the nanocomposite AuNPs/FeO@GluN/Alg, which had an average size of 30-40 nm.

View Article and Find Full Text PDF

Unraveling Serial Degradation Pathways of Supported Catalysts through Reliable Electrochemical Liquid-Cell TEM Analysis.

J Am Chem Soc

December 2024

Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Electrochemical liquid-cell transmission electron microscopy (e-LCTEM) offers great potential for investigating the structural dynamics of nanomaterials during electrochemical reactions. However, challenges arise from the difficulty in achieving the optimal electrolyte thickness, leading to inconsistent electrochemical responses and limited spatial resolution. In this study, we present advanced e-LCTEM techniques tailored for tracking Pt/C degradation under electrochemical polarization at short intervals with high spatial resolution.

View Article and Find Full Text PDF

Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore.

ACS Nano

December 2024

Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States.

Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging.

View Article and Find Full Text PDF

Optimizing Acidic Oxygen Evolution with Manganese-Doped Ruthenium Dioxide Assembly.

ACS Appl Mater Interfaces

December 2024

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Ruthenium dioxide (RuO) is one of the promising catalysts for the acidic oxygen evolution reaction (OER). However, designing RuO catalysts with good activity and stability remains a significant challenge. In this work, we propose the manganese (Mn)-doped RuO assembly as a catalyst for the OER with improved activity and stability.

View Article and Find Full Text PDF

Insights into Folding and Molecular Environment of Lyophilized Proteins Using Pulsed Electron Paramagnetic Resonance Spectroscopy.

Mol Pharm

December 2024

Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.

There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.

View Article and Find Full Text PDF

Photocatalytic oxygen evolution reaction (OER) is pivotal for sustainable energy systems yet lacks high-performance catalysts capable of strong visible light absorption, robust charge dynamics, fast reaction kinetics, and high oxidation capability. Herein, we report the multiscale optimization of carbon nitride through the construction of porous curled carbon nitride nanosheets (CNA-B30) incorporating boron center/cyano group Lewis acid-base pairs (LABPs). The unique chemical and structural features of CNA-B30 extended the photoabsorption edges of π → π* and n → π* electronic transitions to 470 nm and 715 nm, respectively.

View Article and Find Full Text PDF

The synthesis of polymer/oligomer-stabilized metal nanostructures (MNS) opens up a wide range of possibilities, from fundamental materials science to practical applications in domains such as medicine, catalysis, sensing, and energy. Because of the versatility of this synthetic approach, it is a dynamic and ever-changing field of study. These polymers/oligomers have precise control over the nucleation and growth kinetics, allowing the production of mono-disperse MNS with well-defined properties.

View Article and Find Full Text PDF

Ubiquitination is a dynamic post-translational modification governing protein abundance, function, and localization in eukaryotes. The Ubiquitin protein is conjugated to lysine residues of target proteins, but can also repeatedly be ubiquitinated itself, giving rise to a complex code of ubiquitin chains with different linkage types. To enable studying the cellular dynamics of linkage-specific ubiquitination, light-activatable polyubiquitin chain formation is reported here.

View Article and Find Full Text PDF

Navigating the transitional window for organic semiconductor single crystals towards practical integration: from materials, crystallization, and technologies to real-world applications.

Chem Soc Rev

December 2024

Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality.

View Article and Find Full Text PDF

Anilido-oxazoline-ligated iron complexes, including bis(anilido-oxazolinate) iron(II), mononuclear iron(II) alkyl and aryloxide, as well as the dinuclear analogues, were synthesized, and their catalytic performance on ring-opening polymerization (ROP) has been studied. Transmetalation of FeCl(THF) with in situ-generated anilido-oxazolinate lithium afforded the bis(anilido-oxazolinate) iron complexes and . Half-sandwich anilido-oxazolinate iron trimethylsilylalkyl complexes and could be synthesized in good yields via taking pyridine as an L-type ligand.

View Article and Find Full Text PDF

The efficient removal of 99TcO4- from alkaline nuclear waste is vital for optimizing nuclear waste management and safeguarding the environment. However, current state-of-the-art sorbent materials are constrained by their inability to simultaneously achieve high alkali resistance, rapid adsorption kinetics, large adsorption capacity, and selectivity. In this study, we synthesized a urea-rich cationic porous organic polymer, IPM-403, which demonstrates exceptional chemical stability, ultrafast kinetics (~92% removal within 30 seconds), high adsorption capacity (664 mg/g), excellent selectivity, along with multiple-cycle recyclability (up to 7 cycles), making it highly promising for the removal of ReO4- (surrogate of 99TcO4-) from nuclear wastewater.

View Article and Find Full Text PDF

Developing durably active catalysts to tackle harsh voltage polarization and seawater corrosion is pivotal for efficient solar-to-hydrogen (STH) conversion, yet remains a challenge. We report a durably active catalyst of NiCr-layered double hydroxide (RuldsNiCr-LDH) with highly exposed Ni-O-Ru units, in which low-loading Ru (0.32 wt%) is locked precisely at defect lattice site (Rulds) by Ni and Cr.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy metal wastewater is highly toxic even at low levels, posing risks to the environment and human health, necessitating the development of effective treatment methods.
  • MnFeO-loaded bamboo pulp carbon-based aerogel (MCA) is created through freeze-drying and carbonization, and its properties are analyzed using various scientific techniques.
  • MCA shows strong adsorption capabilities for heavy metals Pb, Cu, and Cd, with maximum capacities of 74.38, 84.21, and 73.63 mg/g, indicating its potential for use in wastewater purification.
View Article and Find Full Text PDF

This study determined process conditions under which polystyrene (CPS) and zirconia (YSZ) beads cause similar breakage kinetics and temperature rise during manufacturing of drug nanosuspensions via wet bead milling and explored relative advantages of CPS beads, particularly for stress-sensitive compounds. Besides temperature and particle size measurements, a microhydrodynamic-based kinetic model simulated the conditions for CPS to achieve breakage rates equivalent to those of YSZ. A power law correlation was applied to find conditions conducive to temperature equivalency.

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF

Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFeS, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release.

View Article and Find Full Text PDF

Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction.

J Colloid Interface Sci

December 2024

State Key Laboratory of Catalysis-Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds.

View Article and Find Full Text PDF

Stress resistance-conferring membrane pyrophosphatase (mPPase) found in microbes and plants couples pyrophosphate hydrolysis with H transport out of the cytoplasm. There are two opposing views on the energy-coupling mechanism in this transporter: the pumping is associated with either pyrophosphate binding to mPPase or the hydrolysis step. We used our recently developed stopped-flow pyranine assay to measure H transport into mPPase-containing inverted membrane vesicles on the timescale of a single turnover.

View Article and Find Full Text PDF

Effect of surfactants on inactivation of Bacillus subtilis spores by chlorine.

Water Res

December 2024

School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), CH-8600 Dübendorf, Switzerland. Electronic address:

Bacterial spores pose significant risks to human health, yet the inactivation of spores is challenging due to their unique structures and chemical compositions. This study investigated the synergistic effect between surfactants and chlorine on the inactivation kinetics of Bacillus subtilis spores. Two surfactants, cocamidopropyl betaine (CAPB) and cetyltrimethylammonium chloride (CTMA) were selected to investigate chlorine disinfection in absence and presence of surfactants.

View Article and Find Full Text PDF

High salt concentrations pose a significant challenge to the efficiency of activated sludge (AS) in phenolic wastewater treatment. As a cellular osmoprotectant, proline (Pro) has the capacity to increase the salt tolerance of microbes in AS, hence improving the efficiency of phenolic wastewater degradation. Nevertheless, the precise mechanism behind this enhancement remains ambiguous.

View Article and Find Full Text PDF

Recently, metal-based atomically thin materials (M-ATMs) have experienced rapid development due to their large specific surface areas, abundant electrochemically accessible sites, attractive surface chemistry, and strong in-plane chemical bonds. These characteristics make them highly desirable for energy-related conversion reactions. However, the insufficient active sites and slow reaction kinetics leading to unsatisfactory electrocatalytic performance limited their commercial application.

View Article and Find Full Text PDF

Transition metal oxides (TMOs) can accelerate the sluggish kinetics of vanadium redox reaction, but face challenges like limited active sites and difficulties in nanometerization, highlighting the urgent need for new TMO electrocatalysts for vanadium redox flow battery (VRFB). CoMoO features high electrochemical activity, numerous redox sites, flexible control, and short electron pathways. Herein, a high catalytic and super stable graphite felt electrode modified in situ with network cross-linking CoMoO nanosheets (CoMoO@GF) was prepared via hydrothermal and heat treatment method to enhance VRFB performance.

View Article and Find Full Text PDF