83 results match your criteria: "Institute of Cellular Biology and Pathology "Nicolae Simionescu" (ICBP)[Affiliation]"

Endothelial to mesenchymal transition (EndMT) of valvular endothelial cells (VEC) is a key process in the development and progression of calcific aortic valve disease (CAVD). High expression of the Smad3 transcription factor is crucial in the transition process. We hypothesize that silencing Smad3 could hinder EndMT and provide a novel treatment for CAVD.

View Article and Find Full Text PDF

Non-obese diabetes (NOD) mice are an established, spontaneous model of type 1 diabetes in which diabetes develops through insulitis. Using next-generation sequencing, coupled with pathway analysis, the molecular fingerprint of early insulitis was mapped in a cohort of mice ranging from 4 to 12 weeks of age. The resulting dynamic timeline revealed an initial decrease in proliferative capacity followed by the emergence of an inflammatory signature between 6 and 8 weeks that increased to a regulatory plateau between 10 and 12 weeks.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH.

Methods: Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks.

View Article and Find Full Text PDF

Ficolin-2, recently identified in atherosclerotic plaques, has been correlated with future acute cardiovascular events, but its role remains unknown. We hypothesize that it could influence plaque vulnerability by interfering in the cross-talk between macrophages (MØ) and smooth muscle cells (SMC). To examine its role and mechanism of action, we exposed an in-vitro co-culture system of SMC and MØ to ficolin-2 (10 µg/mL) and then performed cytokine array, protease array, ELISA, qPCR, Western Blot, and monocyte transmigration assay.

View Article and Find Full Text PDF

Background: Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution.

Methods: For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs.

View Article and Find Full Text PDF

Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here.

View Article and Find Full Text PDF

The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study with hypertensive hamsters, researchers noted structural changes like lipid droplet accumulation and gap junction relocation without damage to heart contractility, alongside increased levels of certain proteins and pathways linked to fat metabolism and cell signaling.
  • * The findings suggest that these adaptive responses may help maintain heart function in hypertensive conditions, providing insights for future heart failure prevention strategies.
View Article and Find Full Text PDF

Non-apoptotic regulated cell death (ferroptosis and necroptosis) leads to the release of damage-associated molecular patterns (DAMPs), which initiate and perpetuate a non-infectious inflammatory response. We hypothesize that DAMPs and non-apoptotic regulated cell death are critical players of atherosclerotic plaque progression with inadequate response to lipid-lowering treatment. We aimed to uncover the silent mechanisms that govern the existing residual risk of cardiovascular-related mortality in experimental atherosclerosis.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease in which immune cells target the pancreatic islets and destroy the β-cells, resulting in hyperglycemia and decreased plasmatic insulin levels. The non-obese diabetic (NOD) mouse is the most used animal model for studying diabetes because it spontaneously develops T1D and shares similarities with the human disease. A hallmark feature of this model is the appearance of insulitis, defined as an inflammatory cell infiltration of the pancreatic islets.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) plays a central role in the chronic inflammatory process associated with atherosclerosis development. We aimed to develop lipoplexes carrying RAGE-short hairpin (sh) RNA, targeted to the adhesion molecule P-selectin, selectively expressed on the surface of activated endothelium (Psel-lipo/shRAGE) to down-regulate RAGE expression as a therapeutic strategy for atherosclerosis. In vitro, Psel-lipo/shRAGE lipoplexes were efficiently taken up by activated endothelial cells (EC), decreased the expression of RAGE protein, and proved to be functional by reducing the monocyte adhesion to activated EC.

View Article and Find Full Text PDF

Background: Cardiovascular diseases are still the main cause of death worldwide. Our aim was to analyse the link between miR-223-3p levels, dysfunctional HDL and the age of patients with carotid artery stenosis (CAS).

Methods And Results: Thirty-two CAS patients enrolled for endarterectomy were divided in 2 groups: aged over 65 years (n = 19) and under 65 years (n = 13).

View Article and Find Full Text PDF

Hepatic cancer is one of the most widespread maladies worldwide that requires urgent therapies and thus reliable means for testing anti-cancer drugs. The switch from two-dimensional (2D) to three-dimensional (3D) cell cultures produced an improvement in the in vitro outcomes for testing anti-cancer drugs. We aimed to develop a novel hyaluronic acid (HA)-based 3D cell model of human hepatocellular carcinoma (HepG2 cells) for drug testing and to assess comparatively in 3D vs.

View Article and Find Full Text PDF

Adenoviral transduction has the advantage of a strong and transient induction of the expression of the gene of interest into a broad variety of cell types and organs. However, recombinant adenoviral technology is laborious, time-consuming, and expensive. Here, we present an improved protocol using the pAdEasy system to obtain purified adenoviral particles that can induce a strong green fluorescent protein (GFP) expression in transduced cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small anuclear vesicles, delimited by a lipid bilayer, released by almost all cell types, carrying functionally active biological molecules that can be transferred to the neighbouring or distant cells, inducing phenotypical and functional changes, relevant in various physio-pathological conditions. The microRNAs are the most significant active components transported by EVs, with crucial role in intercellular communication and significant effects on recipient cells. They may also server as novel valuable biomarkers for the diagnosis of metabolic disorders.

View Article and Find Full Text PDF

Background: Mesenchymal stem/stromal cells (MSC) represent adult cells with multipotent capacity. Besides their capacity to differentiate into multiple lineages in vitro and in vivo, increasing evidence points towards the immunomodulatory capacity of these cells, as an important feature for their therapeutic power. Although not included in the minimal criteria established by the International Society for Cellular Therapy as a defining MSC attribute, demonstration of the immunomodulatory capacity of MSC can be useful for the characterization of these cells before being considered MSC.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) are attractive tools for cell-based therapy, yet the mechanisms underlying their migration and survival post-transplantation are unclear. Accumulating evidence indicates that MSC apoptosis modulates both innate and adaptive immune responses which impact on MSC therapeutic effects. Using a dual tracking system, namely the Luciferase expression and VivoTrack680 labelling, and in vivo optical imaging, we investigated the survival and migration of MSC transplanted by various routes (intravenous, subcutaneous, intrapancreatic and intrasplenic) in order to identify the best delivery approach that provides an accumulation of therapeutic cells to the injured pancreas in the non-obese diabetic (NOD) mouse.

View Article and Find Full Text PDF

Mitochondria play a key role in cellular energy production and contribute to cell metabolism, homeostasis, intracellular signalling and organelle's quality control, among other roles. Viable, respiratory-competent mitochondria exist also outside the cells. Such extracellular/exogenous mitochondria occur in the bloodstream, being released by platelets, activated monocytes and endothelial progenitor cells.

View Article and Find Full Text PDF

Dyslipidemia is a documented risk factor for cardiovascular diseases and other metabolic disorders. Therefore, the analysis of hyperlipidemia (HL)-related miRNAs is a potential approach for achieving new prognostic markers in lipid-metabolism related diseases. We aimed to analyze specific distribution of miRNAs in different tissues from HL animals.

View Article and Find Full Text PDF

Aims: The objectives of the present study were to investigate the mechanisms of Ninj-1 regulation in TNFα-activated human endothelial cells (HEC), and to test if Amlodipine (AML) ameliorates the inflammatory stress by decreasing Ninj-1 expression.

Main Methods: TNFα-activated HEC with/without AML (0.1 μM and 1 μM) were used.

View Article and Find Full Text PDF

Pathological wound healing states, such as hypertrophic scarring and keloids, represent a huge clinical and financial burden on healthcare system. The complex biological mechanisms occurring in hypertrophic scarring are still barely understood. To date, there is no satisfactory description of hypertrophic fibroblasts.

View Article and Find Full Text PDF

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are instrumental in all inflammatory phases of atherosclerosis. Dysregulated histone deacetylase (HDAC)-related epigenetic pathways have been mechanistically linked to alterations in gene expression in experimental models of cardiovascular disorders. Hitherto, the relation between HDAC and Nox in atherosclerosis is not known.

View Article and Find Full Text PDF

Citrus flavonoids have well-documented protective effects on cardiovascular system, but the poor water solubility and reduced bioavailability restrict their therapeutic use. We aimed to overcome these limitations and encapsulated naringenin and hesperetin into lipid nanoemulsions (LNs), targeted to vascular cell adhesion molecule-1 (VCAM-1), which is expressed on activated endothelial cells (ECs). LNs were characterized by a hydrodynamic size of ~200 nm, negative zeta potential, an encapsulation efficiency of flavonoids higher than 80%, good in vitro stability and steady release of the cargo.

View Article and Find Full Text PDF

As Romanians prepared to celebrate 100 years of the ''Great Unification of 1918'' which united all provinces into one Romania, the 12 Central and Eastern European Proteomic Conference (CEEPC) jointly with the 39 Anniversary of the Institute of Cellular Biology and Pathology ''N. Simionescu'' (ICBP-NS), held their inaugural meeting at the Romanian Academy in Bucharest - a national forum of highest scientific recognition. With an exciting theme entitled, 'Advances in Proteomics and Progress in Precision Medicine', delegates gathered to debate Precision medicine's revolution in diagnosis and treatment, which now accounts for predictive, preventative, and targeted treatment strategies with informed decisions according to individual's unique clinical, molecular and genetic profile.

View Article and Find Full Text PDF

Mechanism of 17β-estradiol stimulated integration of human mesenchymal stem cells in heart tissue.

J Mol Cell Cardiol

August 2019

Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department for Reproductive Endocrinology, University Zurich, Switzerland. Electronic address:

Scarcity of gender specific donor hearts highlights the importance of mesenchymal stem cells (MSCs) as a therapeutic tool for heart repair. However, inefficient incorporation, retention, and activity of MSCs in cardiac tissue remain an obstacle. Since surges in follicular estradiol (E2; μmolar-range) trigger tissue remodeling (e.

View Article and Find Full Text PDF