13 results match your criteria: "Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy[Affiliation]"

Article Synopsis
  • The prognosis after a myocardial infarction (MI) can vary significantly based on the extent of heart damage and recovery processes.
  • Researchers hypothesized that blocking the pro-inflammatory protein S100A9 could help reduce heart damage and facilitate post-MI healing.
  • Using mass spectrometry to analyze heart tissue from mice, it was found that S100A9 blockade positively affected multiple biological processes and proteins, significantly improving heart conditions by day 7 after MI.
View Article and Find Full Text PDF

Due to their excellent mechanical and biocompatibility properties, titanium-based implants are successfully used as biomedical devices. However, when new bone formation fails for different reasons, impaired fracture healing becomes a clinical problem and affects the patient's quality of life. We aimed to design a new bioactive surface of titanium implants with a synergetic PEG biopolymer-based composition for gradual delivery of growth factors (FGF2, VEGF, and BMP4) during bone healing.

View Article and Find Full Text PDF

Analytical techniques for multiplex analysis of protein biomarkers.

Expert Rev Proteomics

April 2020

Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel.

Introduction: The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways.

View Article and Find Full Text PDF

Our study focused on the long-term degradation under simulated conditions of coatings based on different compositions of polycaprolactone-polyethylene glycol blends (PCL-blend-PEG), fabricated for titanium implants by a dip-coating technique. The degradation behavior of polymeric coatings was evaluated by polymer mass loss measurements of the PCL-blend-PEG during immersion in SBF up to 16 weeks and correlated with those yielded from electrochemical experiments. The results are thoroughly supported by extensive compositional and surface analyses (FTIR, GIXRD, SEM, and wettability investigations).

View Article and Find Full Text PDF

Unlabelled: There is a wide range of pathological conditions proved to be associated with inflammation. The inflammatory process offers protection against harmful stimuli such as induced cell injury and tissues damage by means of specialized mediators and cells. Alarmins, also known as endogenous danger signals or damage-associated molecular patterns (DAMPs) molecules, are critical players of immune response to tissue suffering.

View Article and Find Full Text PDF

Enhanced levels of the inflammatory chemokine CCL2 are known to correlate with increased tumorigenesis and metastases, and thereby poor prognosis for cancer patients. The CCL2-CCR2 chemokine axis was shown to facilitate the metastatic initiation through the recruitment of inflammatory monocytes and the activation of endothelial cells at metastatic sites. Both steps are required for efficient cancer cell trans-endothelial migration and seeding in the targeted tissue.

View Article and Find Full Text PDF

Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner.

J Cell Mol Med

August 2015

Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.

Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system.

View Article and Find Full Text PDF

Chemokines are critically involved in the development of chronic inflammatory-associated diseases such as atherosclerosis. We hypothesized that targeted delivery of compounds to the surface of activated endothelial cells (EC) interferes with chemokine/receptor interaction and thereby efficiently blocks inflammation. We developed PEGylated target-sensitive liposomes (TSL) encapsulating a CCR2 antagonist (Teijin compound 1) coupled with a specific peptide recognized by endothelial VCAM-1 (Vp-TSL-Tj).

View Article and Find Full Text PDF

The interaction between antioxidant glutathione and the free thiol in susceptible cysteine residues of proteins leads to reversible protein S-glutathionylation. This reaction ensures cellular homeostasis control (as a common redox-dependent post-translational modification associated with signal transduction) and intervenes in oxidative stress-related cardiovascular pathology (as initiated by redox imbalance). The purpose of this review is to evaluate the recent knowledge on protein S-glutathionylation in terms of chemistry, broad cellular intervention, specific quantification, and potential for therapeutic exploitation.

View Article and Find Full Text PDF

Hydrogen sulphide (H(2)S) is the most recently discovered gasotransmitter. It is endogenously generated in mammalian vascular cells and attracts substantial interest by its function as physiological relevant signalling mediator, and by its dysfunction in metabolic diseases like obesity, type 2 diabetes and their associated complications. The purpose of this review is to highlight the novel findings on vascular H(2)S homeostasis, pathology-associated dysregulation, cell signalling, and therapeutic potential.

View Article and Find Full Text PDF

The role of HDL in the modulation of endoplasmic reticulum (ER) stress in macrophage-derived foam cells is not completely understood. Therefore, we aimed to investigate whether HDL may inhibit ER stress in correlation with the secretion of apoE and CETP from lipid-loaded macrophages. To this purpose, THP-1 macrophages were loaded with lipids by incubation with human oxidized LDL (oxLDL) and then exposed to human HDL3.

View Article and Find Full Text PDF

Growing evidence links the stress at the endoplasmic reticulum (ER) to pathologies such as diabetes mellitus, obesity, liver, heart, renal and neurodegenerative diseases, endothelial dysfunction, atherosclerosis, and cancer. Therefore, identification of molecular pathways beyond ER stress and their appropriate modulation might alleviate the stress, and direct toward novel tools to fight this disturbance. An interesting resident of the ER membrane is protein tyrosine phosphatase 1B (PTP1B), an enzyme that negatively regulates insulin and leptin signaling, contributing to insulin and leptin resistance.

View Article and Find Full Text PDF

Resistance to the hormones insulin and leptin are hallmarks in common for type 2 diabetes mellitus and obesity. Both conditions are associated with increased activity and expression of protein tyrosine phosphatase (PTP)1B. Therefore, inhibition of PTP1B activity or down-regulation of its expression should ameliorate insulin and leptin resistance, and may hold therapeutic utility in type 2 diabetes mellitus and obesity control.

View Article and Find Full Text PDF