8 results match your criteria: "Institute of Biotechnology and Drug Research gGmbH[Affiliation]"

Magnaporthe oryzae is placed first on a list of the world's top ten plant pathogens with the highest scientific and economic importance. The locus MGG_07173 occurs only once in the genome of M. oryzae and encodes the phosphotransfer protein MoYpd1p, which plays an important role in the high osmolarity glycerol (HOG) signaling pathway for osmoregulation.

View Article and Find Full Text PDF

The dynamic interplay of signaling networks in most major cellular processes is characterized by the orchestration of reversible protein phosphorylation. Consequently, analytic methods such as quantitative phospho-peptidomics have been pushed forward from a highly specialized edge-technique to a powerful and versatile platform for comprehensively analyzing the phosphorylation profile of living organisms. Despite enormous progress in instrumentation and bioinformatics, a high number of missing values caused by the experimental procedure remains a major problem, due to either a random phospho-peptide enrichment selectivity or borderline signal intensities, which both cause the exclusion for fragmentation using the commonly applied data dependent acquisition (DDA) mode.

View Article and Find Full Text PDF

Identification of the polyketide synthase gene responsible for the synthesis of tanzawaic acids in Penicillium steckii IBWF104-06.

Fungal Genet Biol

January 2023

Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany; Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany. Electronic address:

Microorganisms have been used as biological control agents (BCAs) in agriculture for a long time, but their importance has increased dramatically over the last few years. The Penicillium steckii IBWF104-06 strain has presented strong BCA activity in greenhouse experiments performed against phytopathogenic fungi and oomycetes. P.

View Article and Find Full Text PDF

Diseases caused by dimorphic phytopathogenic and systemic dimorphic fungi have markedly increased in prevalence in the last decades, and understanding the morphogenic transition to the virulent state might yield novel means of controlling dimorphic fungi. The dimorphic fungus causes significant economic impact on wheat production, and yet the regulation of the dimorphic switch, a key first step in successful plant colonization, is still largely unexplored in this fungus. The fungus is amenable to suppression by fungicides at this switch point, and the identification of the factors controlling the dimorphic switch provides a potential source of novel targets to control   blotch (STB).

View Article and Find Full Text PDF

Evolutionary adaptation of living organisms is commonly thought to be the result of processes that have taken place over long periods of time. By contrast, we found that the filamentous rice blast fungus Magnaporthe oryzae rapidly suppresses the osmosensitive "loss of function" (lof) phenotype in knockout mutants of the high-osmolarity glycerol (HOG) pathway. That suppression occurs highly reproducibly after 4 weeks of continuous growth upon salt stress.

View Article and Find Full Text PDF

"Omics" technologies (genomics, transcriptomics, proteomics, metabolomics, etc.) have significantly improved our understanding of biological systems. They have become standard tools in biological research, for example, identifying and unraveling transcriptional networks, building predictive models, and discovering candidate biomarkers.

View Article and Find Full Text PDF

Resistance management plays a key role in modern plant protection. There is a growing need to identify new fungicide targets and new modes of action. In this context, it is also mandatory to find new compounds acting on successful target locations.

View Article and Find Full Text PDF

Chromatography techniques are widely used to separate, identify, and quantify molecules depending on their physicochemical properties. Standard methods range from simple size exclusion to separation based on affinity or ion exchange. Here, we present a method for the direct analysis of carbohydrates in Magnaporthe oryzae using high-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD).

View Article and Find Full Text PDF