121 results match your criteria: "Institute of Biological Interfaces (IBG-2)[Affiliation]"

Trp residues near peptide termini enhance the membranolytic activity of cationic amphipathic α-helices.

Biophys Chem

December 2024

Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Electronic address:

KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation.

View Article and Find Full Text PDF

A novel method for the concurrent introduction of fluorine and bromine into the surface of nanoporous activated carbon (NAC) is evaluated. According to the method, the preheated NAC was treated with 1,2-dibromotetrafluoroethane at elevated temperatures (400-800 °C). Potentiometric and elemental analysis, nitrogen adsorption-desorption, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and F solid-state NMR were used to study the NAC microstructure and changes in surface chemistry.

View Article and Find Full Text PDF

According to the proposed pyrolytic method, granular activated carbon (AC) Norit 830 W was functionalized by thermal treatment of AC in hydrofluorocarbon (HFC) gases, pentafluoroethane and 1,1,1,2-tetrafluoroethane, at 400-800 °C. This method does not require activation by plasma and photons. Chemical and elemental analysis showed that the pyrolytic treatment provides a loading of 2.

View Article and Find Full Text PDF

Li-ion batteries stand out among energy storage systems due to their higher energy and power density, cycle life, and high-rate performance. Development of advanced, high-capacity anodes is essential for enhancing their performance, safety, and durability, and recently, two-dimensional materials have garnered extensive attention in this regard due to distinct properties, particularly their ability to modulate van der Waals gap through intercalation. Covalently intercalated Graphene oxide interlayer galleries with mono-Boc-ethylenediamine (GO-EnBoc) was synthesized the ring opening of epoxide, forming an amino alcohol moiety.

View Article and Find Full Text PDF

Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network-Based Frenkel Hamiltonian and Gradients.

J Chem Theory Comput

July 2024

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

In this study, we present a multiscale method to simulate the propagation of Frenkel singlet excitons in organic semiconductors (OSCs). The approach uses neural network models to train a Frenkel-type Hamiltonian and its gradient, obtained by the long-range correction version of density functional tight-binding with self-consistent charges. Our models accurately predict site energies, excitonic couplings, and corresponding gradients, essential for the nonadiabatic molecular dynamics simulations.

View Article and Find Full Text PDF

High-Throughput Miniaturized Synthesis of PROTAC-Like Molecules.

Small

June 2024

Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

The development of miniaturized high-throughput in situ screening platforms capable of handling the entire process of drug synthesis to final screening is essential for advancing drug discovery in the future. In this study, an approach based on combinatorial solid-phase synthesis, enabling the efficient synthesis of libraries of proteolysis targeting chimeras (PROTACs) in an array format is presented. This on-chip platform allows direct biological screening without the need for transfer steps.

View Article and Find Full Text PDF

Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles.

Small

August 2023

Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.

For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how changes in cellular membrane shape are crucial for many biological processes, particularly through local curvature changes triggered by specific proteins like Epsin-1.
  • Epsin-1's N-terminal segment, EpN18, is identified as key to creating these curvatures, with research revealing important structural features that influence this process.
  • Findings highlight that hydrophobic residues, especially leucine, significantly enhance the membrane interaction and curvature induction of EpN18, potentially aiding in the delivery of other molecules into cells.
View Article and Find Full Text PDF

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy.

View Article and Find Full Text PDF

Length matters: Functional flip of the short TatA transmembrane helix.

Biophys J

June 2023

Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany. Electronic address:

The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatA in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues.

View Article and Find Full Text PDF

While materials based on organic molecules usually have either superior optoelectronic or superior chiral properties, the combination of both is scarce. Here, a crystalline chiroptical film based on porphyrin with homochiral side groups is presented. While the dissolved molecule has a planar, thus, achiral porphyrin core, upon assembly in a metal-organic framework (MOF) film, the porphyrin core is twisted and chiral.

View Article and Find Full Text PDF

BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state F, N and H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected.

View Article and Find Full Text PDF

Amphipathic peptides can act as antibiotics due to membrane permeabilization. KL peptides with the repetitive sequence [Lys-Leu]-NH form amphipathic β-strands in the presence of lipid bilayers. As they are known to kill bacteria in a peculiar length-dependent manner, we suggest here several different functional models, all of which seem plausible, including a carpet mechanism, a β-barrel pore, a toroidal wormhole, and a β-helix.

View Article and Find Full Text PDF

A labeling strategy for in vivo F-MRI (magnetic resonance imaging) based on highly fluorinated, short hydrophilic peptide probes, is developed. As dual-purpose probes, they are functionalized further by a fluorophore and an alkyne moiety for bioconjugation. High fluorination is achieved by three perfluoro-tert-butyl groups, introduced into asparagine analogues by chemically stable amide bond linkages.

View Article and Find Full Text PDF

Structural analysis of the peptides temporin-Ra and temporin-Rb and interactions with model membranes.

Eur Biophys J

September 2022

Instituto de Física, Universidade Federal de Goiás, Av. Esperança, s/n - Campus Samambaia, Goiânia, GO, 74690-900, Brazil.

The skin of amphibians is widely exploited as rich sources of membrane active peptides that differ in chain size, polypeptide net charge, secondary structure, target selectivity and toxicity. In this study, two small antimicrobial peptides, temporin-Ra and temporin-Rb, originally isolated from the skin of the European marsh frog (Rana ridibunda), described as active against pathogen bacteria and presenting low toxicity to eukaryotic cells were synthesized and had their physicochemical properties and mechanism of action investigated. The temporin peptides were examined in aqueous solution and in the presence of membrane models (lipid monolayers, micelles, lipid bilayers and vesicles).

View Article and Find Full Text PDF

The lateral pressure profile constitutes an important physical property of lipid bilayers, influencing the binding, insertion, and function of membrane-active peptides, such as antimicrobial peptides. In this study, we demonstrate that the lateral pressure profile can be manipulated using the peptides residing in different regions of the bilayer. A F-labeled analogue of the amphiphilic peptide PGLa was used to probe the lateral pressure at different depths in the membrane.

View Article and Find Full Text PDF

Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors.

J Chem Theory Comput

March 2022

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China.

The trajectory surface hopping (TSH) method is nowadays widely applied to study the charge/exciton transport process in organic semiconductors (OSCs). In the present study, we systematically examine the performance of two approximations in the fewest switched surface hopping (FSSH) simulations for charge transport (CT) in several representative OSCs. These approximations include (i) the substitution of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by rescaling the hopping probability with the Boltzmann factor (Boltzmann correction (BC)) and (ii) a phenomenological approach to treat the quantum feedback from the electronic system to the nuclear system (implicit charge relaxation (IR)) in the OSCs.

View Article and Find Full Text PDF

4,4-Bis(carbazol-9-yl)-2,2-biphenyl (CBP) is widely used as a host material in phosphorescent organic light-emitting diodes (PhOLEDs). In the present study, we simulate the absorption spectra of CBP in gas and condensed phases, respectively, using the efficient time-dependent long-range corrected tight-binding density functional theory (TD-LC-DFTB). The accuracy of the condensed-phase absorption spectra computed using the structures obtained from classical molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) simulations is examined by comparison with the experimental absorption spectrum.

View Article and Find Full Text PDF

Cationic membrane-active peptides are considered to be promising candidates for antibiotic treatment. Many natural and artificial sequences show an antimicrobial activity when they are able to take on an amphipathic fold upon membrane binding, which in turn perturbs the integrity of the lipid bilayer. Most known structures are α-helices and β-hairpins, but also cyclic knots and other irregular conformations are known.

View Article and Find Full Text PDF

Fluorophores linked to the glucose/galactose-binding protein (GGBP) are a promising class of glucose sensors with potential application in medical devices for diabetes patients. Several different fluorophores at different positions in the protein were tested experimentally so far, but a deeper molecular understanding of their function is still missing. In this work, we use molecular dynamics simulations to investigate the mechanism of glucose binding in the GGBP-Badan triple mutant and make a comparison to the GGBP wild-type protein.

View Article and Find Full Text PDF

Semiempirical methods like density functional tight-binding (DFTB) allow extensive phase space sampling, making it possible to generate free energy surfaces of complex reactions in condensed-phase environments. Such a high efficiency often comes at the cost of reduced accuracy, which may be improved by developing a specific reaction parametrization (SRP) for the particular molecular system. Thiol-disulfide exchange is a nucleophilic substitution reaction that occurs in a large class of proteins.

View Article and Find Full Text PDF

Circular dichroism is a conventional method for studying the secondary structures of peptides and proteins and their transitions. While certain circular dichroism features are characteristic of α-helices and β-strands, the third most abundant secondary structure, the polyproline-II helix, does not exhibit a strictly conserved spectroscopic appearance. Due to its extended nature, the polyproline-II helix is highly accessible to the surrounding solvent; thus, the environment has a critical influence on the lineshape of the circular dichroism spectra of this structure.

View Article and Find Full Text PDF

The roles of structural factors and of electrostatic interactions with the environment on the outcome of thiol-disulfide exchange reactions were investigated in a mutated immunoglobulin domain (I27*) under mechanical stress. An extensive ensemble of molecular dynamics trajectories was generated by means of QM/MM simulations for a total sampling of 5.7 μs.

View Article and Find Full Text PDF

A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state.

View Article and Find Full Text PDF

Membrane-Mediated Activity of Local Anesthetics.

Mol Pharmacol

November 2021

Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)

The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs.

View Article and Find Full Text PDF