202 results match your criteria: "Institute of Biological Information Processing IBI-7[Affiliation]"

The plant ethylene receptor ETR1 is a key player in the perception of the phytohormone and subsequent downstream ethylene signal transmission, crucial for processes such as ripening, senescence and abscission. However, to date, there is sparse structural knowledge about the transmembrane sensor domain (TMD) of ETR1 that is responsible for the binding of the plant hormone and initiates the downstream signal transmission. Sequence information and modelling suggest that the TMD consists of three transmembrane helices.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how small hydrophobic molecules, like inert gases, interact with membrane proteins at a molecular level.
  • Using high pressure atmospheres of argon and krypton, the researchers examined crystals of three well-known membrane proteins, revealing that most gas binding sites were on the outer hydrophobic surface of these proteins.
  • The findings, supported by molecular dynamics simulations, suggest that these interactions could be significant, especially in relation to noble gas-induced anesthesia.
View Article and Find Full Text PDF

Parkinson's disease (PD) is associated with motor and non-motor symptoms and characterized by aggregates of alpha-synuclein (αSyn). Naturally occurring antibodies (nAbs) are part of the innate immune system, produced without prior contact to their specific antigen, and polyreactive. The abundance of nAbs against αSyn is altered in patients with PD.

View Article and Find Full Text PDF

ATP synthase FF structure, function, and structure-based drug design.

Cell Mol Life Sci

March 2022

Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FF) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential.

View Article and Find Full Text PDF

Biomolecular phase separation plays a key role in the spatial organization of cellular activities. Dynamic formation and rapid component exchange between phase separated cellular bodies and their environment are crucial for their function. Here, we employ a well-established phase separating model system, namely, a triethylamine (TEA)-water mixture, and develop an NMR approach to detect the exchange of scaffolding TEA molecules between separate phases and determine the underlying exchange rate.

View Article and Find Full Text PDF

Molecular Modeling and Simulations of DNA and RNA: DNAzyme as a Model System.

Methods Mol Biol

March 2022

Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Nowadays, the structural dynamics of DNA and RNA is accessible on an atomistic level on a micro- to millisecond time scale via molecular dynamics simulations. However, as DNA or RNA are highly charged molecules, performing such simulations is challenging as to the representation of intramolecular electrostatic interactions and those to solvent molecules and ions. This is particularly true for DNAzymes, where DNA and RNA backbones can come as close as 2.

View Article and Find Full Text PDF

Nine heritable diseases are known that are caused by unphysiologically elongated polyglutamine tracts in human proteins leading to misfolding, aggregation and neurodegeneration. Current therapeutic strategies include efforts to inhibit the expression of the respective gene coding for the polyglutamine-containing proteins. There are, however, concerns that this may interfere with the physiological function of the respective protein.

View Article and Find Full Text PDF

Severe respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious beta-class coronavirus. Although vaccinations have shown high efficacy, the emergence of novel variants of concern (VOCs) has already exhibited traits of immune evasion. Thus, the development of tailored antiviral medications for patients with incomplete, inefficient, or non-existent immunization, is essential.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 main protease (3CL) is crucial for viral replication by cleaving polyproteins into essential nonstructural proteins, making it a key target for drug development against Covid-19.
  • Numerous inhibitors have been identified, but D-peptides, which offer advantages over traditional L-peptides, have not been thoroughly explored as treatment options for 3CL.
  • This study introduces a computational approach using structure-based virtual screening to discover D-peptides that inhibit 3CL, demonstrating significant inhibitory effects from selected D-tetrapeptides and showcasing the method's potential for broader applications in protein inhibition.
View Article and Find Full Text PDF

Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment.

View Article and Find Full Text PDF

Coronaviruses, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), present an ongoing threat to human wellbeing. Consequently, elucidation of molecular determinants of their function and interaction with the host is an important task. Whereas some of the coronaviral proteins are extensively characterized, others remain understudied.

View Article and Find Full Text PDF

Genetically encoded green fluorescent protein (GFP)-based redox biosensors are widely used to monitor specific and dynamic redox processes in living cells. Over the last few years, various biosensors for a variety of applications were engineered and enhanced to match the organism and cellular environments, which should be investigated. In this context, the unicellular intraerythrocytic parasite , the causative agent of malaria, represents a challenge, as the small size of the organism results in weak fluorescence signals that complicate precise measurements, especially for cell compartment-specific observations.

View Article and Find Full Text PDF

Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis.

Comput Struct Biotechnol J

December 2021

John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.

Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes.

View Article and Find Full Text PDF

A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly.

Biochim Biophys Acta Mol Cell Biol Lipids

April 2022

Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany. Electronic address:

Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and biofilm-mediated multidrug resistance. It produces and secretes various toxins with hydrolytic activities including phospholipases. However, the function of intracellular phospholipases for bacterial virulence has still not been established.

View Article and Find Full Text PDF

The 10-23 DNAzyme is one of the most prominent catalytically active DNA sequences. Its ability to cleave a wide range of RNA targets with high selectivity entails a substantial therapeutic and biotechnological potential. However, the high expectations have not yet been met, a fact that coincides with the lack of high-resolution and time-resolved information about its mode of action.

View Article and Find Full Text PDF

Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments.

View Article and Find Full Text PDF

Chronic mental illnesses (CMIs) pose a significant challenge to global health due to their complex and poorly understood etiologies and hence, absence of causal therapies. Research of the past two decades has revealed dysfunction of the disrupted in schizophrenia 1 (DISC1) protein as a predisposing factor involved in several psychiatric disorders. DISC1 is a multifaceted protein that serves myriads of functions in mammalian cells, for instance, influencing neuronal development and synapse maintenance.

View Article and Find Full Text PDF

Major tail proteins of bacteriophages of the order Caudovirales.

J Biol Chem

January 2022

Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany. Electronic address:

Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes-a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods.

View Article and Find Full Text PDF

Cluster crystals are periodic structures with lattice sites occupied by several, overlapping building blocks, featuring fluctuating site occupancy, whose expectation value depends on thermodynamic conditions. Their assembly from atomic or mesoscopic units is long-sought-after, but its experimental realization still remains elusive. Here, we show the existence of well-controlled soft matter cluster crystals.

View Article and Find Full Text PDF

Cancer stem-like cells mediate tumor initiation, progression, and therapy resistance; however, their identification and selective eradication remain challenging. Herein, we analyze the metabolic dependencies of glioblastoma stem-like cells (GSCs) with high-resolution proton nuclear magnetic resonance (H-NMR) spectroscopy. We stratify our in vitro GSC models into two subtypes primarily based on their relative amount of glutamine in relationship to glutamate (Gln/Glu).

View Article and Find Full Text PDF

Light-oxygen-voltage (LOV) domains are common photosensory modules that found many applications in fluorescence microscopy and optogenetics. Here, we show that the Chloroflexus aggregans LOV domain can bind different flavin species (lumichrome, LC; riboflavin, RF; flavin mononucleotide, FMN; flavin adenine dinucleotide, FAD) during heterologous expression and that its physicochemical properties depend strongly on the nature of the bound flavin. We show that whereas the dissociation constants for different chromophores are similar, the melting temperature of the protein reconstituted with single flavin species varies from ~ 60 °C for LC to ~ 81 °C for FMN, and photobleaching half-times vary almost 100-fold.

View Article and Find Full Text PDF

Disorder-to-order transition of the amyloid-β peptide upon lipid binding.

Biophys Chem

January 2022

Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany. Electronic address:

There is mounting evidence that Alzheimer's disease progression and severity are linked to neuronal membrane damage caused by aggregates of the amyloid-β (Aβ) peptide. However, the detailed mechanism behind the membrane damage is not well understood yet. Recently, the lipid-chaperone hypothesis has been put forward, based on which the formation of complexes between Aβ and free lipids enables an easy insertion of Aβ into membranes.

View Article and Find Full Text PDF

PlaF is a cytoplasmic membrane-bound phospholipase A from that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive.

View Article and Find Full Text PDF