19 results match your criteria: "Institute of Biological Information Processing - Bioelectronics[Affiliation]"

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

The brain integrates activity across networks of interconnected neurons to generate behavioral outputs. Several physiological and imaging-based approaches have been previously used to monitor responses of individual neurons. While these techniques can identify cellular responses greater than the neuron's action potential threshold, less is known about the events that are smaller than this threshold or are localized to subcellular compartments.

View Article and Find Full Text PDF

Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER-PM contact formation.

View Article and Find Full Text PDF

Electron Microscopy of Neurons on Biomimetic Substrates.

Methods Mol Biol

August 2024

Tissue Electronics, Istituto Italiano di Tecnologia, Naples, Italy.

Recent advancements in nano- and microfabrication techniques have led to the development of highly biomimetic patterned substrates able to guide neuronal sprouting, routing, elongation, and branching. Such substrates, recapitulating shapes and geometries found in the native brain, may pave the way toward the development of cell instructive paradigms able to guide morphogenesis at the neuron-material interface. In this scenario, high-resolution electron microscopy approaches, owing to their ability of discerning the details of neural morphogenesis at a nanoscale resolution, may play a crucial role in unravelling the fine ultrastructure of neurons interfacing with biomimetic structured substrates.

View Article and Find Full Text PDF

Significant challenges have emerged in the development of biomimetic electronic interfaces capable of dynamic interaction with living organisms and biological systems, including neurons, muscles, and sensory organs. Yet, there remains a need for interfaces that can function on demand, facilitating communication and biorecognition with living cells in bioelectronic systems. In this study, the design and engineering of a responsive and conductive material with cell-instructive properties, allowing for the modification of its topography through light irradiation, resulting in the formation of "pop-up structures", is presented.

View Article and Find Full Text PDF

Contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules (T-tubules), we hypothesize that the PM curvature plays a role in ER-PM contact formation.

View Article and Find Full Text PDF

Conventional electrochemical sensors use voltammetric and amperometric methods with external power supply and modulation systems, which hinder the flexibility and application of the sensors. To avoid the use of an external power system and to minimize the number of electrochemical cell components, a self-powered electrochemical sensor (SPES) for hydrogen peroxide was investigated here. Iron phthalocyanine, an enzyme mimetic material, and Ni were used as a cathode catalyst and an anode material, respectively.

View Article and Find Full Text PDF

Introduction to memristors and neuromorphic systems.

Mater Horiz

July 2024

Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples 80125, Italy.

Article Synopsis
  • Recent advancements in generative AI have significantly impacted various sectors, but they consume a lot of energy and computational resources.
  • Neuromorphic computing aims to develop efficient hardware that mimics biological neural networks, potentially enhancing next-generation computing.
  • Memristors are promising components for neuromorphic systems, as they can replicate neural functions, and innovations in this area could help tackle complex computational problems.
View Article and Find Full Text PDF

Corrigendum to "Sonicated polyethylene terephthalate nano- and micro-plastic-induced inflammation, oxidative stress, and autophagy in vitro" [Chemosphere 355 (2024) 141813].

Chemosphere

June 2024

ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany. Electronic address:

View Article and Find Full Text PDF

Neurohybrid systems have gained large attention for their potential as in vitro and in vivo platform to interrogate and modulate the activity of cells and tissue within nervous system. In this scenario organic neuromorphic devices have been engineered as bioelectronic platforms to resemble characteristic neuronal functions. However, aiming to a functional communication with neuronal cells, material synthesis, and surface engineering can yet be exploited for optimizing bio-recognition processes at the neuromorphic-neuronal hybrid interface.

View Article and Find Full Text PDF

Organic neuromorphic platforms have recently received growing interest for the implementation and integration of artificial and hybrid neuronal networks. Here, achieving closed-loop and learning/training processes as in the human brain is still a major challenge especially exploiting time-dependent biosignalling such as neurotransmitter release. Here, we present an integrated organic platform capable of cooperating with standard silicon technologies, to achieve brain-inspired computing adaptive synaptic potentiation and depression, in a closed-loop fashion.

View Article and Find Full Text PDF

Sonicated polyethylene terephthalate nano- and micro-plastic-induced inflammation, oxidative stress, and autophagy in vitro.

Chemosphere

May 2024

ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany. Electronic address:

The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity.

View Article and Find Full Text PDF

Synaptic plasticity is a fundamental process for neuronal communication and is involved in neurodegeneration. This process has been recently exploited to inspire the design of next-generation bioelectronic platforms. Neuromorphic devices have emerged as ideal candidates in mimicking brain functionalities, thanks to their ionic-to-electronic signal transduction, biocompatibility, and their ability to display short- and long-term memory as biological synapses.

View Article and Find Full Text PDF

In this work, we analyze the impact of a chip coating with a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) on the electronic and mechanical properties of neuroelectronic interfaces. We show that the large signal transfer, which has been observed for these interfaces, is most likely a consequence of the strong mechanical coupling between cells and substrate. On the one hand, we demonstrate that the impedance of the interface between Pt electrodes and an electrolyte is slightly reduced by the APTES SAM.

View Article and Find Full Text PDF

Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution.

View Article and Find Full Text PDF

Electrochemical sensors that can determine single/multiple analytes remain a key challenge in miniaturized analytical systems and devices. In this study, we present synthesis and modification of gold nanodendrite electrodes to create an electrochemical system for the analysis of hydrogen peroxide. The sensor system consisted of the reference and counter electrodes as well as the working electrode.

View Article and Find Full Text PDF

Background: Approximately 40% of prescribed drugs exert their activity via GTP-binding protein-coupled receptors (GPCRs). Once activated, these receptors cause transient changes in the concentration of second messengers, e.g.

View Article and Find Full Text PDF