1,291 results match your criteria: "Institute of Biochemistry and Biology[Affiliation]"
J Hazard Mater
January 2025
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.
View Article and Find Full Text PDFMol Plant
January 2025
Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.
View Article and Find Full Text PDFCommun Biol
January 2025
Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).
View Article and Find Full Text PDFIntensifying extreme droughts are altering lentic ecosystems and disrupting services provisioning. Unfortunately, drought research often lacks a holistic and intersectoral consideration of drought impacts, which can limit relevance of the insights for adaptive management. This literature review evaluated the current state of lake and reservoir extreme drought research in relation to biodiversity and three ecosystem services.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
The enterobacterium present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. TorA is anchored to the membrane via TorC, a pentahemic -type cytochrome which receives the electrons from the menaquinol pool.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
Unlabelled: The rising atmospheric concentration of CO is a major concern to society due to its global warming potential. In soils, CO-fixing microorganisms are preventing some of the CO from entering the atmosphere. Yet, the controls of dark CO fixation are rarely studied .
View Article and Find Full Text PDFSci Rep
December 2024
Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
During a survey on the biodiversity of oomycetes in aquatic environments in northwest Iran (East Azarbaijan and West Azarbaijan provinces), three Pythium and four Globisporangium isolates were recovered from agricultural water pools and irrigation canals, respectively. Through a polyphasic approach combining morphology and phylogenetic analysis using the nuclear rDNA ITS1-5.8 S-ITS2 (ITS) and partial sequences of the cytochrome c oxidase subunit I and II (COX1 and COX2), three novel species were identified namely Globisporangium tabrizense sp.
View Article and Find Full Text PDFSmall
December 2024
Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.
Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Department of Vegetation Ecology and Biodiversity Conservation, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany.
Nitrogen (N) deposition and climate change are both known to threaten global biodiversity. However, we still have a limited understanding of how interactions between these global change drivers affect individuals and populations of specialist species, such as geophytes, within their natural habitat. We explored possible interactive effects of N, drought, and warming on population vitality (mean leaf length, leaf density, flowering probability) and morpho-physiological traits (e.
View Article and Find Full Text PDFCell Tissue Res
December 2024
Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.
View Article and Find Full Text PDFPLoS One
December 2024
Giraffe Conservation Foundation, Windhoek, Namibia.
Giraffe (Giraffa spp.) are among the most unique extant mammals in terms of anatomy, phylogeny, and ecology. However, aspects of their evolution, ontogeny, and taxonomy are unresolved, retaining lingering questions that are pivotal for their conservation.
View Article and Find Full Text PDFPlant Physiol
December 2024
Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany.
Collections of insertional mutants have been instrumental for characterizing the functional relevance of genes in different model organisms, including Arabidopsis (Arabidopsis thaliana). However, mutations may often result in subtle phenotypes, rendering it difficult to pinpoint the function of a knocked-out gene. Here, we present a data-integrative modeling approach that enables predicting the effects of mutations on metabolic traits and plant growth.
View Article and Find Full Text PDFProc Biol Sci
December 2024
Department of Zoology, University of Cambridge CB2 3EJ, UK.
Shrews are among the most speciose of mammalian clades, but their evolutionary history is poorly understood. Their fossil record is fragmentary and even the anatomy of living groups is not well documented. Here, we incorporate the oldest, most complete fossil shrew yet known into the first phylogenetic analysis of the group to include molecular, morphological and temporal data.
View Article and Find Full Text PDFJ Bacteriol
December 2024
Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Brandenburg, Germany.
Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability, and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in prokaryotes and eukaryotes. The s group of sU34 stabilizes anticodon structure, confers ribosome-binding ability to tRNA, and improves reading frame maintenance. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides of sU34, such as the L-cysteine desulfurase IscS and the tRNA thiouridylase MnmA in .
View Article and Find Full Text PDFJ Phycol
December 2024
Institute of Biochemistry and Biology, Aquatic Ecology Group, University of Potsdam, Potsdam, Germany.
Biological invasions are a major threat for many aquatic ecosystems. In contrast to higher plants and animals, microbial invasions are less obvious and more difficult to detect. One of the most prominent microbial invaders is the cyanobacterium Raphidiopsis raciborskii.
View Article and Find Full Text PDFEcology
November 2024
Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Sci Rep
November 2024
Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands.
Soil water deficit (WD) significantly impacts plant survival and crop yields. Many gaps remain in our understanding of the synergistic coordination between molecular and ecophysiological responses delaying substantial drought-induced effects on plant growth. To investigate this synergism in tomato leaves, we combined molecular, ecophysiological, and anatomical methods to examine gene expression patterns and physio-anatomical characteristics during a progressing WD experiment.
View Article and Find Full Text PDFEnviron Microbiome
November 2024
GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany.
Background: Although plastic pollution is increasing worldwide, very little is known about the microbial processes that take place once plastic debris is incorporated into the soil matrix. In this study, we conducted the first metatranscriptome analysis of polyethylene (PE)-associated biofilm communities in highly polluted landfill soil and compared their gene expression to that of a forest soil community within a 53-day period.
Results: Our findings indicate that the microbial population present in soil contaminated with plastic debris is predisposed to both inhabit and degrade plastic surfaces.
Water Res
February 2025
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China; Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China. Electronic address:
River ecosystems face escalating challenges due to altered flow regimes from human activities, such as urbanization with hydrological modifications. Understanding the role of microbial communities for ecosystems with changing flow regimes is still incomplete and remains at the frontier of aquatic microbial ecology. In particular, influences of riverine backward flow on the aquatic biota remain largely unknown.
View Article and Find Full Text PDFFood Chem
February 2025
Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany. Electronic address:
Glucosinolates, commonly found in Brassica vegetables, are hydrolyzed by myrosinase to form bioactive isothiocyanates, unless specifier proteins redirect the degradation to less bioactive nitriles and epithionitriles. Here, the tissue-specific impact of specifier proteins on the outcome of glucosinolate hydrolysis in nine kohlrabi tissues was investigated. Glucosinolates and their hydrolysis product profiles, epithiospecifier protein and myrosinase activity, and protein abundance patterns of key glucosinolate biosynthesis, transport and hydrolysis enzymes were determined and correlated to the metabolites in the kohlrabi tissues.
View Article and Find Full Text PDFTrends Plant Sci
November 2024
Central Metabolism, Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany. Electronic address:
The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity.
View Article and Find Full Text PDFMol Diagn Ther
November 2024
Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany.
Compromising between accuracy and rapidity is an important issue in analytics and diagnostics, often preventing timely and appropriate reactions to disease. This issue is particularly critical for infectious diseases, where reliable and rapid diagnosis is crucial for effective treatment and easier containment, thereby reducing economic and societal impacts. Diagnostic technologies are vital in disease modeling, tracking, treatment decision making, and epidemic containment.
View Article and Find Full Text PDFPhytochemistry
February 2025
Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
Osmotic shock is the first step of high salt or drought action that involves biochemical and molecular changes during plant response to these unfavorable conditions. Indole-3-acetyl-aspartate (IAA-aspartate, IAA-Asp) is the main amide conjugate of auxin in pea (Pisum sativum L.) tissues.
View Article and Find Full Text PDFThe boundaries around habitat islands in agricultural fields are rather unexamined, although they may be an important part of agroecosystems in some regions. In this study, we surveyed field boundaries in northeastern Brandenburg both at outer field borders and around kettle holes, which are typical habitat islands in the region. We examined, described, and compared the plant species diversity and composition at both the inner and outer field boundaries in the arable fields (crop edge) as well as in permanent vegetation (field margins).
View Article and Find Full Text PDFPLoS Comput Biol
November 2024
Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
The increasing availability of enzyme turnover number measurements from experiments and of turnover number predictions from deep learning models prompts the use of these enzyme parameters in precise metabolic engineering. Yet, there is no computational approach that allows the prediction of metabolic engineering strategies that rely on the modification of turnover numbers. It is also unclear if modifications of turnover numbers without alterations in the host's transcriptional regulatory machinery suffice to increase the production of chemicals of interest.
View Article and Find Full Text PDF