82 results match your criteria: "Institute of Biochemical Physics RAS[Affiliation]"

Previous research has demonstrated that a combined magnetic field (CMF) plays a critical role in modifying the properties of aqueous solutions, leading to an increase in the luminol-enhanced chemiluminescence of neutrophils. Using this model, the distant interaction between aqueous solutions was demonstrated, and the role of a CMF in the regulation of this phenomenon was established. In the current study, highly diluted (HD) phorbol myristate acetate (PMA) solution (the donor) was incubated with aqueous ethanol (the acceptor), both in a CMF-generating device and under geomagnetic field (GMF), for 0, 20, and 60 min.

View Article and Find Full Text PDF

The use of hexagonal boron nitride (h-BN) as a material for hydrogen storage is attributed to its ability to accommodate atomic and molecular hydrogen. However, the low diffusion barrier of molecular hydrogen within the h-BN structure does not fully explain the long-term stability of hydrogen bubbles observed in experimental work [L. He, H.

View Article and Find Full Text PDF
Article Synopsis
  • The correction addresses errors in the original report regarding the nonequilibrium thermodynamic model applied to thermoelectricity and thermodiffusion in semiconductors.
  • Key updates clarify the theoretical framework and experimental data analysis to ensure accurate interpretations.
  • The authors emphasize the importance of these corrections for future research in thermoelectric materials and their applications.
View Article and Find Full Text PDF

Bilayer C Polymer/-BN Heterostructures: A DFT Study of Electronic and Optic Properties.

Polymers (Basel)

June 2024

Research and Education Center "Silicon and Carbon Nanotechnologies", Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia.

Interest in fullerene-based polymer structures has renewed due to the development of synthesis technologies using thin C polymers. Fullerene networks are good semiconductors. In this paper, heterostructure complexes composed of C polymer networks on atomically thin dielectric substrates are modeled.

View Article and Find Full Text PDF

Phonon thermophoresis of crystalline nanoparticles in liquids.

Phys Chem Chem Phys

March 2024

Department of Chemistry, Boise State University, Boise, ID, USA.

Our nonequilibrium thermodynamic model of thermodiffusion in molecular liquid systems is used to examine the role of thermal phonons in the thermophoresis of liquid suspensions of crystalline nanoparticles, which tend to have high thermal conductivity. The Soret coefficient used to characterize stationary thermodiffusion is related to differences in entropy between a particle and the body of liquid that it displaces. Calculated phonon Soret coefficients for graphite and diamond nanoparticles in three polar solvents are used to establish parameters where the phonon mechanism is expected to dominate particle thermophoresis compared to slip-flow caused by forces induced in the surface layer by the temperature gradient.

View Article and Find Full Text PDF

The development of various enzyme-linked immunosorbent assays (ELISAs) coupled with surface-enhanced Raman scattering (SERS) detection is a growing area in analytical chemistry due to their potentially high sensitivity. A SERS-based ELISA with horseradish peroxidase (HRP) as an enzymatic label, an -phenylenediamine (oPD) substrate, and a 2,3-diaminophenazine (DAP) enzymatic product was one of the first examples of such a system. However, the full capabilities of this long-known approach have yet to be revealed.

View Article and Find Full Text PDF

Kinetic and thermodynamic parameters have been investigated for the thermal Z‒E isomerization of dihydroquinolylazotetrazole dyes with alkyl substituents (Me, t-Bu, and Adm) at positions 1 (dyes 2) and 2 (dyes 3) of the tetrazole moiety in two solvents of different polarity, acetonitrile (MeCN) and toluene. The experimental results show crucial dependence of these parameters on a substituent position in the tetrazole moiety and on a solvent. For dyes 2, E and ΔH are lower in MeCN than in toluene that results in a high increase in the lifetimes of the Z isomers: from milliseconds in MeCN to minutes in toluene.

View Article and Find Full Text PDF

The transition to neuromorphic devices is relevant to the development of materials capable of providing electronic switching in response to external stimuli. In the present work, the HfCO/MoS heterostructure under biaxial strain, interlayer coupling, and an electric field was investigated by first-principles calculations based on density functional theory. We have shown that the influence of lateral deformation as well as the perpendicular external electric field is more significant compared to the influence of external vertical pressure on changes in the heterojunction type of heterostructure.

View Article and Find Full Text PDF

Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence.

View Article and Find Full Text PDF

The optoelectronic signatures of free-standing few-atomic-layer black phosphorus nanoflakes are analyzed by in situ transmission electron microscopy (TEM). As compared to other 2D materials, the band gap of black phosphorus (BP) is related directly to multiple thicknesses and can be tuned by nanoflake thickness and strain. The photocurrent measurements with the TEM show a stable response to infrared light illumination and change of nanoflakes band gap with deformation while pressing them between two electrodes assembled in the microscope.

View Article and Find Full Text PDF

The main reserve polysaccharide of plants-starch-is undoubtedly important for humans. One of the main sources of starch is the potato tuber, which is able to preserve starch for a long time during the so-called dormancy period. However, accumulated data show that this dormancy is only relative, which raises the question of the possibility of some kind of starch restructuring during dormancy periods.

View Article and Find Full Text PDF

To understand the relationship between the genotype of maize plants and differences in their origin and the ploidy of the genome, which carry gene alleles programming the biosynthesis of various starch modifications, the thermodynamic and morphological features of starches from the grains of these plants have been studied. This study investigated the peculiarities of starch extracted from subspecies of maize (the dry matter mass (DM) fraction, starch content in grain DM, ash content in grain DM, and amylose content in starch) belonging to different genotypes within the framework of the program for the investigation of polymorphism of the world collection of plant genetic resources VIR. Among the starch genotypes of maize studied, four groups comprised the waxy (), conditionally high amylose (""), sugar (), and wild (WT) genotypes.

View Article and Find Full Text PDF

Diamanes are unique 2D carbon materials that can be obtained by the adsorption of light atoms or molecular groups onto the surfaces of bilayer graphene. Modification of the parent bilayers, such as through twisting of the layers and the substitution of one of the layers with BN, leads to drastic changes in the structure and properties of diamane-like materials. Here, we present the results of the DFT modelling of new stable diamane-like films based on twisted Moiré G/BN bilayers.

View Article and Find Full Text PDF

Multidrug-resistant bacteria form serious problems in many areas, including medicine and the food industry. At the same time, great interest is shown in the transfer or enhancement of antimicrobial properties to various materials by modifying them with enzymes. The use of enzymes in biomaterials with antimicrobial properties is important because enzymes can be used as the main active components providing antimicrobial properties of functionalized composite biomaterials, or can serve as enhancers of the antimicrobial action of certain substances (antibiotics, antimicrobial peptides, metal nanoparticles, etc.

View Article and Find Full Text PDF

We present a self-consistent model rooted in nonequilibrium thermodynamics for defining concentration gradients in the electron/hole pairs and electric-field gradients in an intrinsic semiconductor created upon exposure to a temperature gradient. The model relies on the equation for entropy production expressed through phenomenological equations for the electron/hole flux, with the imposed condition that the resulting concentration profiles of the electrons and holes are identical. The chemical potentials of electrons, holes, and parent atoms of the lattice, which are contained in the flux equations, are calculated on the basis of the temperature-dependent equilibrium dissociation reaction: lattice atom ↔ electron + hole.

View Article and Find Full Text PDF

Herein we report a simple and easily scalable method for fabricating ZnO/-BN composites with tunable photoluminescence (PL) characteristics. The -BN support significantly enhances the ultraviolet (UV) emission of ZnO nanoparticles (NPs), which is explained by the ZnO/-BN interaction and the change in the electronic structure of the ZnO surface. When -BN NPs are replaced with -BN microparticles, the PL in the UV region increases, which is accompanied by a decrease in visible light emission.

View Article and Find Full Text PDF

Single substitution in α-helix of active center enhanced thermostability of Aspergillus awamori exo-inulinase.

J Mol Graph Model

March 2023

FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia. Electronic address:

Exo-inulinases are applied in inulin hydrolysis and production of feed additives and need to be stable at temperatures of 60-95 °C. Aspergillus awamori exo-inulinase Inu1 is considerably thermostable, with a T of 73.2 °C.

View Article and Find Full Text PDF

While histone deacetylase inhibitors, such as vorinostat, demonstrate a significant effect against hematological cancers, their application for solid tumor treatment is limited. However, there is strong evidence that combinatorial administration of vorinostat and genotoxic agents (e.g.

View Article and Find Full Text PDF

Currently, new nanomaterials for high-capacity lithium-ion batteries (LIBs) and sodium- ion batteries (SIBs) are urgently needed. Materials combining porous structure (such as representatives of metal-organic frameworks) and the ability to operate both with lithium and sodium (such as transition-metal dichalcogenides) are of particular interest. Our work reports the computational modelling of a new A'-MoS structure and its application in LIBs and SIBs.

View Article and Find Full Text PDF

The rubber crumbs produced by the explosive circular destruction of worn-out automobile tires were studied. The crumbs showed high hydrophilicity. Their surface was analyzed by X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

We extend our nonequilibrium thermodynamic model of thermodiffusion in binary systems to multi-component mixtures. The fundamental parameter is the difference in molecular entropy of the components, which can be obtained in one of three ways; (i) derived as temperature derivatives of the respective equilibrium chemical potentials at constant pressure using equilibrium statistical mechanics; (ii) obtained in the literature from computer simulations; or (iii) obtained as empirical values in the literature. The model is used to relate thermodiffusion in multicomponent mixtures of related isomers or isotopes to isomer/isotope effects in binary mixtures that are commonly enumerated in one of two ways: (i) as a difference in the Soret coefficients measured on two binary mixtures, each containing one of two related isomers/isotope in a common solvent; or (ii) as this difference from two binary mixtures, each consisting of a common solute dissolved in one of the two related isomers/isotopes as the solvent.

View Article and Find Full Text PDF

Ultra-Low Thermal Conductivity of Moiré Diamanes.

Membranes (Basel)

September 2022

Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoi Blv. 30, Building 1, 121205 Moscow, Russia.

Ultra-thin diamond membranes, diamanes, are one of the most intriguing quasi-2D films, combining unique mechanical, electronic and optical properties. At present, diamanes have been obtained from bi- or few-layer graphene in AA- and AB-stacking by full hydrogenation or fluorination. Here, we study the thermal conductivity of diamanes obtained from bi-layer graphene with twist angle θ between layers forming a Moiré pattern.

View Article and Find Full Text PDF

Due to difficulties in obtaining monomaterials, intensive research into the properties of ceramic compositions has been undertaken, along with developments to the properties of the compositions. These are not inferior to monomeric structures for a number of basic parameters. Among the different types of ceramics, magnesium fluoride and zinc sulfide occupy a special place due to their unique properties and specific applications.

View Article and Find Full Text PDF

Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment.

View Article and Find Full Text PDF

We proposed novel carbon nanostructures based on a twisted few-layered graphene with one side passivated by hydrogen or fluorine: Moiré diamones on graphene. The presence of a dangling bond at the bottom layer of diamones leads to the appearance of spin density localization, which can be tuned by the variation of the twist angle with the following formation of Moiré diamones. The spin-polarized nature of electronic density distribution was obtained and discussed in detail on the basis of ab initio calculations.

View Article and Find Full Text PDF