926 results match your criteria: "Institute of Bio-and Geosciences[Affiliation]"

Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1.

Int J Mol Sci

January 2025

Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic.

View Article and Find Full Text PDF

Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils.

Foods

January 2025

Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.

In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% / solutions of ethanol, 3% / acetic acid solution, and isooctane, were among the critical studies conducted.

View Article and Find Full Text PDF

Filamentous fungi are a cornerstone in the biotechnological production of enzymes, proteins, and organic acids. However, challenges in understanding and controlling the relationship between morphology and productivity can limit their application. This study addresses these challenges using Thermothelomyces thermophilus, a promising thermophilic fungus known for the production of thermostable enzymes.

View Article and Find Full Text PDF

In recent years, more agricultural lands are been converted to photovoltaic (PV) power plants for better return on investment. However, prioritizing energy generation over food production poses a significant threat to the well-being of the rapidly growing global population. Agro-photovoltaics (APV) provide an opportunity to integrate crop production under PV panels.

View Article and Find Full Text PDF

Novel 4-alkoxy Meriolin Congeners Potently Induce Apoptosis in Leukemia and Lymphoma Cells.

Molecules

December 2024

Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.

(3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids and and display a strong cytotoxic potential. We have recently shown that the novel derivative is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl congeners (-), i.

View Article and Find Full Text PDF

Phytochemical Study and In Vitro Antioxidant Activity of Along with Antitumor Activity of the Isolated -Tiliroside and Luteolin 4'--β-Xyloside.

Molecules

December 2024

Laboratory of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry, Faculty of Matter Sciences, University of Batna 1, Batna 05000, Algeria.

Twelve compounds (-), kaempferol (), luteolin (), luteolin 4'--xyloside (), luteolin 4'--β-glucoside (), quercetin 4'--β-xyloside (), kaempferol-3--[6″--(E)-p-coumaroyl]-β-D-glucoside (-tiliroside) (), protocatechuic acid (), gallic acid (), methyl gallate (), ethyl gallate (), shikimic acid-3--gallate (), and 3,3',4'-tri--methyl-ellagic acid 4-sulfate (), were isolated and identified from the aerial parts of (Cav.) Pers (synonym: C. Presl.

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.

View Article and Find Full Text PDF

A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.

View Article and Find Full Text PDF

The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages.

View Article and Find Full Text PDF

Tire Wear Particles Exposure Enhances Denitrification in Soil by Enriching Labile DOM and Shaping the Microbial Community.

Environ Sci Technol

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil.

View Article and Find Full Text PDF

Photocaged compounds are chemical conjugates that are designed to release an active molecule upon exposure to light of a specific wavelength. In recent years, photocaged inducer molecules such as caged isopropyl β-D-1-thiogalactopyranoside (cIPTG) have been increasingly used as a powerful tool for light-driven gene expression in bacteria, allowing researchers to precisely and noninvasively tune the expression of specific target genes. In this chapter, we present a guideline for the synthesis of 6-nitropiperonyl photocaged IPTG (NP-cIPTG) as well as its in vivo application as an optochemical on-switch of gene transcription in Escherichia coli and other bacteria.

View Article and Find Full Text PDF

There is a strong interest in itaconic acid in the medical and pharmaceutical sectors, both as an anti-bacterial compound and as an immunoregulator in mammalian macrophages. Fungal hosts also produce itaconic acid, and in addition they can produce two derivatives 2-hydroxyparaconic and itatartaric acid. Not much is known about these two derivatives, while their structural analogy to itaconate could open up several applications.

View Article and Find Full Text PDF
Article Synopsis
  • Dynamic monitoring of in-situ chemical oxidation (ISCO) for LNAPLs in groundwater is crucial for assessing the effectiveness of remediation efforts through measurements like spectral and time-domain induced polarization.
  • The study compares different injection strategies, revealing that a multiple-injection approach retains more oxidant in the source area compared to a single-injection method, with considerable decreases in electrical resistivity and chargeability during the ISCO process.
  • Overall, the findings lead to a conceptual model that describes pore structure changes during ISCO, showing how oxidant injection alters conductivity and reduces LNAPL levels, which allows for more precise characterization of groundwater remediation.
View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) are established anticancer drugs, especially in hematological cancers. This study aimed to design, synthesize, and evaluate a set of HDACi featuring a pentyloxyamide connecting unit linker region and substituted phenylthiazole cap groups. A structural optimization program yielded HDACi with nanomolar inhibitory activity against histone deacetylase class I/IIb enzymes.

View Article and Find Full Text PDF

Many species of the genus are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several species were recently transferred to a new genus named . Because of their unique enzymatic machinery, these strains are being discussed as novel biocatalysts in biotechnology.

View Article and Find Full Text PDF

Incorporation of soil amendments with high organic carbon content (HCA) can reduce losses of mineral nitrogen (N) from agricultural soils. The magnitude of N immobilization and remobilization is strongly controlled by the availability of carbon (C) and phosphorus (P). However, the exact mechanisms and interactions between C, N, and P availability are poorly understood.

View Article and Find Full Text PDF

The efficacy of phosphorus (P) based fertilizers is frequently compromised by soil dynamics that render much of the applied P unavailable for crops. This study aimed to: (i) validate a new P model's prediction of plant-available P; (ii) analyze the effects of organic versus mineral fertilization on P availability and crop yield; and (iii) examine temporal changes in P pools under various fertilization regimes. Data were collected from two long-term field trials, Dikopshof and Bad Lauchstädt, in Germany, using organic (FYM), mineral (MIN), a combination of organic and mineral (MIX) fertilizers, and unfertilized treatments.

View Article and Find Full Text PDF

From molasses to purified α-ketoglutarate with engineered Corynebacterium glutamicum.

Bioresour Technol

January 2025

Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Electronic address:

α-ketoglutarate (AKG) is a valuable dicarboxylic acid with multiple applications in the food, pharmaceutical, and chemical industries. Its chemical synthesis is associated with toxic by-products, low specificity, and high energy input. To create a more environmentally friendly and sustainable alternative, a microbial production process for AKG was developed.

View Article and Find Full Text PDF

Introduction: Efficient and cost-effective immobilization methods are crucial for advancing the utilization of enzymes in industrial biocatalysis. To this end, immobilization methods relying on the completely biological production of immobilizates represent an interesting alternative to conventional carrier-based immobilization methods. This study aimed to introduce a novel immobilization strategy using -produced magnetic protein aggregates (MPAs).

View Article and Find Full Text PDF
Article Synopsis
  • Malonyl-CoA is crucial for producing valuable compounds like polyketides and biofuels, but its availability is limited due to competition in metabolic pathways.
  • Researchers modified a genome-reduced strain of Pseudomonas putida to enhance malonyl-CoA levels by knocking out certain genes involved in sugar metabolism, the TCA cycle, and fatty acid biosynthesis.
  • A colorimetric screening method using the RppA gene allowed them to identify strains with increased malonyl-CoA and led to greater polymer production, demonstrating an effective strategy to enhance malonyl-CoA-dependent processes.
View Article and Find Full Text PDF

Frankia cluster-2 strains are diazotrophs that engage in root nodule symbiosis with actinorhizal plants of the Cucurbitales and the Rosales. Previous studies have shown that an assimilated nitrogen source, presumably arginine, is exported to the host in nodules of Datisca glomerata (Cucurbitales), while a different metabolite is exported in the nodules of Ceanothus thyrsiflorus (Rosales). To investigate if an assimilated nitrogen form is commonly exported to the host by cluster-2 strains, and which metabolite would be exported in Ceanothus, we analysed gene expression levels, metabolite profiles, and enzyme activities in nodules.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses challenges in measuring cell growth in cyanobacteria due to issues like self-shading and uneven CO levels in traditional photobioreactors.
  • A new microfluidic platform allows for precise monitoring of cyanobacterial growth, providing uniform light and accurate CO supply at the single-cell level.
  • The research demonstrated that under controlled conditions, cyanobacterial growth is stable with synchronized cell division, but growth ceases quickly in darkness and is limited by low CO levels.
View Article and Find Full Text PDF

Aplospojaveedins A-C, unusual sulfur-containing alkaloids produced by the endophytic fungus using OSMAC strategy.

Front Microbiol

September 2024

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.

Three sulfur-containing alkaloids aplospojaveedins A-C (1-3) with a hitherto undescribed carbon skeleton comprising octahy-dronaphthalene, , -unsaturated lactam and glycine-cysteine moieties were isolated from . Their structures were elucidated by 1D and 2D NMR spectroscopy, HR-MS, X-ray diffraction analysis, DFT-NMR and TDDFT-ECD calculations. A plausible biosynthetic pathway and putative targets are described.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the urgent need for sustainable plastic recycling methods, especially for polyethylene terephthalate (PET), due to increasing plastic waste and fossil resource depletion, highlighting biocatalytic recycling as a promising solution.* -
  • The study compares the production of a biocatalyst, cutinase ICCG, using two different bacteria: E. coli and C. glutamicum, finding that E. coli released significantly more of the enzyme due to its unique membrane properties.* -
  • Optimizations in the growth conditions for E. coli led to impressive levels of cutinase production and enzymatic activity, demonstrating its effectiveness in breaking down PET materials quickly and efficiently.*
View Article and Find Full Text PDF