113 results match your criteria: "Institute of Applied Physics "Nello Carrara[Affiliation]"

An advanced optofluidic system for protein detection based on Raman signal amplification via dewetting and molecular gathering within temporary mesoscale assemblies is presented. The evaporation of a microliter volume of protein solution deposited in a circular microwell precisely follows an outward-receding geometry. Herein the combination of liquid withdrawal with intermolecular interactions induces the formation of self-assembled molecular domains at the solid-liquid interface.

View Article and Find Full Text PDF

Donor-acceptor dyes are a well-established class of photosensitizers, used to enhance visible-light harvesting in solar cells and in direct photocatalytic reactions, such as H production by photoreforming of sacrificial electron donors (SEDs). Amines-typically triethanolamine (TEOA)-are commonly employed as SEDs in such reactions. Dye-sensitized photoreforming of more sustainable, biomass-derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor.

View Article and Find Full Text PDF

In this work, the adsorption of cytochrome C (CytC) on wet {100}, {111}, {110}, and {120} silver surfaces has been investigated by computational simulations. The effect of polyvinylpyrrolidone (PVP) coating has also been studied. The main results obtained can be summarized as follow: (a) CytC strongly interacts with wet bare high index facets, while the adsorption over the {100} surface is disfavored due to the strong water structuring at the surface; (b) a nonselective protein adsorption mechanism is highlighted; (c) the native structure of CytC is well preserved during adsorption; (d) the heme group of CytC is never found to interact directly with the surface; (e) the interactions with the PVP-capped {100} surface is weak and specific.

View Article and Find Full Text PDF

A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now.

View Article and Find Full Text PDF

Strategies for protein detection via surface-enhanced Raman spectroscopy (SERS) currently exploit the formation of randomly generated hot spots at the interfaces of metal colloidal nanoparticles, which are clustered together by intrusive chemical or physical processes in the presence of the target biomolecule. We propose a different approach based on selective and quantitative gathering of protein molecules at regular hot spots generated on the corners of individual silver nanocubes in aqueous medium at physiological pH. Here, the protein, while keeping its native configuration, experiences an intense local E-field, which boosts SERS efficiency and detection sensitivity.

View Article and Find Full Text PDF

In the photothermal treatments (PTs) of tumor, the localization of a high number of near-infrared (NIR) absorbing gold nanoparticles in the tumor mass is still a challenging issue. Here, we propose a promising strategy to deliver therapeutic chitosan-coated gold nanoparticles to tumor cells as hidden cargo of Endothelial Colony Forming Cells (ECFCs) endowed with an innate tumor-tropism. Remarkably, ECFC gold enrichement doesn't affect cell viability and preserves the endothelial lineage characteristics such as capillary morphogenesis and cell migration.

View Article and Find Full Text PDF

Statistical detection of nanoparticles in cells by darkfield microscopy.

Phys Med

July 2016

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, I-50139 Florence, Italy.

In the fields of nanomedicine, biophotonics and radiation therapy, nanoparticle (NP) detection in cell models often represents a fundamental step for many in vivo studies. One common question is whether NPs have or have not interacted with cells. In this context, we propose an imaging based technique to detect the presence of NPs in eukaryotic cells.

View Article and Find Full Text PDF

A plastic optical fibre biosensor based on surface plasmon resonance for the detection of C-reactive protein (CRP) in serum is proposed. The biosensor was integrated into a home-made thermo-stabilized microfluidic system that allows avoiding any thermal and/or mechanical fluctuation and maintaining the best stable conditions during the measurements. A working range of 0.

View Article and Find Full Text PDF

In this work, a portable-Raman device (excitation wavelength 1064nm) was employed for the first time for continuously monitoring the complex molecular dynamics of terpenoid resins (dammar, mastic, colophony, sandarac and shellac), which occur during their ageing under artificial light exposure. The instrumentation was equipped with a pyroelectric sensor allowing for temperature control of the sample's irradiated surface while the acquisition of spectra occurs by setting fixed maximum temperature and total radiant exposure. Resins were dropped into special pits over a dedicated rotating wheel moved by a USB motor.

View Article and Find Full Text PDF

Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies.

View Article and Find Full Text PDF

An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer.

View Article and Find Full Text PDF

Applications of near-patient testing have developed rapidly during the last years. It offers quick test results and minimal preanalytical interference, having the potential to improve patient outcomes, even when still under scrutiny by laboratory and healthcare professionals. Near-patient diagnostics are currently also used increasingly in developing countries, due to the burden of inadequate healthcare services in resource-constrained settings.

View Article and Find Full Text PDF

An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance.

View Article and Find Full Text PDF

Introduction: Merging robotics with laser eye surgery could enhance precision, repeatability and automation. During some eye laser procedures the patient is awake, thus eye stabilization is desired to avoid movements that could affect the treatment.

Material And Methods: The ESPRESSO platform has a two-stage actuation system to position a stabilization tool on the eye, a proximity sensing unit to monitor the stabilization tool position, and a sensing unit to monitor the pressure exerted on the eye.

View Article and Find Full Text PDF

Open Ambient Intelligence Environments.

Stud Health Technol Inform

April 2017

Institute of Applied Physics "Nello Carrara", National Research Council of Italy.

The present impact of ambient intelligence concepts in eInclusion is first briefly reviewed. Suggestions and examples of how ambient intelligent environments should be specified, designed and used to favour independent living of people with activity limitations are presented.

View Article and Find Full Text PDF

Mutations of Profilin-1 Associated with Amyotrophic Lateral Sclerosis Promote Aggregation Due to Structural Changes of Its Native State.

ACS Chem Biol

November 2015

Department of Biomedical Experimental and Clinical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, I-50134, Florence, Italy.

The PFN1 gene, coding for profilin-1, has recently been associated with familial amyotrophic lateral sclerosis (fALS), as three mutations, namely C71G, M114T, and G118V, have been found in patients with familial forms of the disease and another, E117G, has been proposed to be a moderate risk factor for disease onset. In this work, we have purified the four profilin-1 variants along with the wild-type protein. The resulting aggregates appear to be fibrillar, to have a weak binding to ThT, and to possess a significant amount of intermolecular β-sheet structure.

View Article and Find Full Text PDF

Gold nanorods (GNRs) are important platforms for biosensing and drug delivery. As for most nanomaterials, appropriate coatings such as polyethylene glycol (PEG) are needed to stabilize GNRs within biological fluids. We show here that the interactions of GNRs with proteins can be finely modulated through surface modification using PEG-containing chains bearing charged headgroups.

View Article and Find Full Text PDF

Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs) for the detection of DNA.

View Article and Find Full Text PDF

Protein misfolded proteins are among the most toxic endogenous species of macromolecules. These chemical entities are responsible for neurodegenerative disorders such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob's and different non-neurophatic amyloidosis. Notably, these oligomers show a combination of marked heterogeneity and low abundance in body fluids, which have prevented a reliable detection by immunological methods so far.

View Article and Find Full Text PDF

SERS detection of proteins is typically performed by using labeling agents with stable and high Raman scattering cross sections. This is a valuable approach for trace detection and quantification of a target protein but is unsuitable for inspecting its inherent structural and functional properties. On the other hand, direct SERS of proteins has been mainly devoted to the study of short peptides and aminoacid sequences or of prosthetic groups with intense Raman signals, which is of scarce interest for a thorough characterization of most proteins.

View Article and Find Full Text PDF

Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells.

View Article and Find Full Text PDF

The cannabinoid receptors type 2 (CBR2) are attractive therapeutic targets of the endocannabinoid signaling system (ECS) as they are not displaying the undesired psychotropic and cardiovascular side-effects seen with cannabinoid receptor type 1 (CB1R) agonists. In continuation of our previous work on 2,4,6-trisubstituted 1,3,5-triazines as potent CB2 agonists, we synthesized an additional series of more polar analogues (1-10), which were found to possess high CB2R agonist activity with enhanced water solubility. The most potent compound in the series was N-(adamantan-1-yl)-4-ethoxy-6-(4-(2-fluoroethyl)piperazin-1-yl)-1,3,5-triazin-2-amine (9) with EC50 value of 0.

View Article and Find Full Text PDF

Size dependent biological profiles of PEGylated gold nanorods.

J Mater Chem B

September 2014

Institute of Applied Physics "Nello Carrara", National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Italy.

The perspective of introducing plasmonic particles for applications in biomedical optics is receiving much interest. However, their translation into clinical practices is delayed by various factors, which include a poor definition of their biological interactions. Here, we describe the preparation and the biological profiles of gold nanorods belonging to five different size classes with average effective radii between ∼5 and 20 nm and coated with polyethylene glycol (PEG).

View Article and Find Full Text PDF

In this paper, a procedure is described for the assessment of human exposure to magnetic fields with complex waveforms generated by arc-welding equipment. The work moves from the analysis of relevant guidelines and technical standards, underlining their strengths and their limits. Then, the procedure is described with particular attention to the techniques used to treat complex waveform fields.

View Article and Find Full Text PDF

Graphene has recently emerged as a novel material in the biomedical field owing to its optical properties, biocompatibility, large specific surface area and low cost. In this paper, we provide the first demonstration of the possibility of using light to remotely trigger the release of drugs from graphene in a highly controlled manner. Different drugs including chemotherapeutics and proteins are firmly adsorbed onto reduced graphene oxide (rGO) nanosheets dispersed in a biopolymer film and then released by individual millisecond-long light pulses generated by a near infrared (NIR) laser.

View Article and Find Full Text PDF