22 results match your criteria: "Institute of Applied Materials Science (IAMS)-Vietnam Academy of Science and Technology (VAST)[Affiliation]"

Article Synopsis
  • Green silver nanoparticles (AgNPs) were created using natural extracts and used for photocatalytic hydrogen production, promoting green energy and reducing reliance on fossil fuels.
  • These AgNPs enhanced the performance of g-CN nanosheets by broadening light absorption and improving electron transfer, leading to increased hydrogen production efficiency, particularly with AgNPs derived from coffee, green tea, and pomelo peels.
  • The study demonstrated that the combination of g-CN and AgNPs, especially from coffee, outperformed g-CN alone by efficiently producing hydrogen under low-intensity visible light, showcasing a significant step towards sustainable energy solutions.
View Article and Find Full Text PDF

Bacteria threaten human and animal health, and standard antibiotics no longer effective. Antibiotic-resistant microorganisms can make infection treatment challenging and perhaps fail. Investigating the attributes of cyclotide, a peptide with promising antibacterial properties that holds great potential in the field of antibiotic research.

View Article and Find Full Text PDF

A study on the antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activity of the Artemisia vulgaris L. extract and its fractions.

J Ethnopharmacol

November 2024

Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), 1B TL29, Ho Chi Minh, Viet Nam; Graduate University of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam. Electronic address:

Ethnopharmacological Relevance: Vietnamese people use mugwort (Artemisia vulgaris L.) to treat arthritis and gout. Our previous research shows that mugwort contains flavonoids, and its extract possesses antibacterial and anti-inflammatory activities.

View Article and Find Full Text PDF

The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role.

View Article and Find Full Text PDF

Thermally-responsive and reduced glutathione-sensitive folate-targeted nanocarrier based on alginate and pluronic F127 for on-demand release of methotrexate.

Int J Biol Macromol

April 2024

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam. Electronic address:

A specific rheumatoid arthritis (RA)-microenvironment-triggered nanocarrier for RA treatment of a first-line antirheumatic drug (Methotrexate, MTX) has been proposed. Reduced glutathione (GSH) responsivity, cystamine, was first introduced on the alginate backbone, which was then used as the bridge to connect pluronic F127 (temperature-responsive factor) and folic acid (targeting factor for active immune cells), resulting in dual-responsive triggered targeting carrier, PCAC-FA. In vitro study demonstrated that PCAC-FA was preferentially taken up by activated macrophage cells rather than normal ones, suggesting the targeting of PCAC-FA to inflamed tissue.

View Article and Find Full Text PDF

Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis.

View Article and Find Full Text PDF

Cyclotides, plant-derived cysteine-rich peptides, exhibit a wide range of beneficial biological activities and possess exceptional structural stability. Cyclotides are commonly distributed throughout the Violaceae family. Viola dalatensis Gagnep, a Vietnamese species, has not been well studied, especially for cyclotides.

View Article and Find Full Text PDF

Injectable thermogel incorporating reactive oxygen species scavenger and nitric oxide donor to accelerate the healing process of diabetic wounds.

Int J Pharm

December 2023

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam. Electronic address:

The healing of diabetic wounds is challenging due to redox imbalances. Herein, the thermogelling system AR-ACP hydrogel, with encapsulated biosafe nitric oxide (NO) donor L-arginine and resveratrol as an ROS scavenger, is established for sustainable wound therapy in the diabetic state. The innovated AR-ACP hydrogel dressings shows the sol-gel transition at 34 °C, allowing the hydrogel to fully cover wounds.

View Article and Find Full Text PDF

Cysteine-rich peptides: From bioactivity to bioinsecticide applications.

Toxicon

July 2023

Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam. Electronic address:

Greater levels of insect resistance and constraints on the use of current pesticides have recently led to increased crop losses in agricultural production. Further, the health and environmental impacts of pesticides now restrict their application. Biologics based on peptides are gaining popularity as efficient crop protection agents with low environmental toxicity.

View Article and Find Full Text PDF

Insights into the synthesis strategies of plant-derived cyclotides.

Amino Acids

June 2023

Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.

Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes.

View Article and Find Full Text PDF

Multifunctional injectable pluronic-cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration.

Int J Biol Macromol

August 2021

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam. Electronic address:

This paper presents a new thermal sensitive hydrogel system based on cystamine-functionalised sodium alginate-g-pluronic F127 (ACP). The introduction of cystamine to the alginate backbone not only creates a covalent bond with pluronic F127 but also provides intrinsic anti-bacterial activity for the resultant hydrogel. The amount of water uptake inside the hydrogel remained ~200% for 6 days and the degradation was completed in 12 days in physiological media.

View Article and Find Full Text PDF

Cytocompatible dendrimer G3.0-hematin nanoparticle with high stability and solubility for mimicking horseradish peroxidase activity in in-situ forming hydrogel.

Int J Biol Macromol

April 2021

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam. Electronic address:

Hematin has been used as an alternative enzyme catalyst to horseradish peroxidase (HRP) due to its iron-containing activity center. Although hematin and it derivatives have been widely used for polymerization of phenol/analine compounds, it has some drawbacks such as the limited solubility and reaction only at high pH condition. Herein, we report a nanosized biomimetic catalyst, hematin-decorated polyamidoamine dendrimer (G3.

View Article and Find Full Text PDF

In this study, graphene oxide (GO) sheets were successfully synthesized using two routes: conventional Hummers' (HGO) and modified Hummers' (or Marcano's) (MGO) methods. GO sheets were then assembled with TiO₂ nanoparticles to form nanocomposites (i.e.

View Article and Find Full Text PDF

A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application.

Biomed Pharmacother

September 2019

Institute of Research and Development, Duy Tan University, Da Nang City, 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Hochiminh City, 700000, Viet Nam; Graduate University of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, Hochiminh City, 700000, Viet Nam. Electronic address:

This study aimed to fabricate the potential therapeutic scaffold to efficiently and safely fastening skin wound healing. A biocompatible grafting polymer-based thermal sensitive hybrid hydrogel (Chitosan-P123, CP) containing gelatin and curcumin was designed to be suitable stiffness for tissue regeneration. A detailed in the rheological study found that the encapsulated agents induced the change in the stiffness of the hydrogel from the hard to the soft.

View Article and Find Full Text PDF

Carboplatin (CAR) is a second generation platinum-based compound emerging as one of the most widely used anticancer drugs to treat a variety of tumors. In an attempt to address its dose-limiting toxicity and fast renal clearance, several delivery systems (DDSs) have been developed for CAR. However, unsuitable size range and low loading capacity may limit their potential applications.

View Article and Find Full Text PDF

Antimicrobial compounds from traditional fermented foods have shown activity against a wide range of pathogen and spoilage microorganisms for several years. In this study, a Lactic acid bacteria (LAB), isolated from Vietnamese traditional fermented yogurt ( SC01), was encapsulated in alginate-gelatin (ALG-GEL) and the effect of incubation temperature, medium pH and surfactants were assessed. The aims of this research were to evaluate antimicrobial activity of bacteriocin produced by SC01.

View Article and Find Full Text PDF

Functionalized mesoporous silica nanoparticles and biomedical applications.

Mater Sci Eng C Mater Biol Appl

June 2019

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29, District 12, Ho Chi Minh City 700000, Viet Nam. Electronic address:

Since the first report in early 1990s, mesoporous silica nanoparticles (MSNs) have progressively attracted the attention of scientists due to their potential applications in physic, energy storage, imaging, and especially in biomedical engineering. Owning the unique physiochemical properties, such as highly porosity, large surface area and pore volume, functionalizable, tunable pore and particle sizes and biocompatibility, and high loading cavity, MSNs offer efficient encapsulation and then controlled release, and in some cases, intracellular delivery of bioactive molecules for biomedical applications. During the last decade, functionalized MSNs that show respond upon the surrounding stimulus changes, such as temperature, pH, redox, light, ultrasound, magnetic or electric fields, enzyme, redox, ROS, glucose, and ATP, or their combinations, have continuously revolutionized their potential applications in biomedical engineering.

View Article and Find Full Text PDF

Polymer coating has drawn increasing attention as a leading strategy to overcome the drawbacks of superparamagnetic iron oxide nanoparticles (SPIONs) in targeted delivery of anticancer drugs. In this study, SPIONs were modified with heparin-Poloxamer (HP) shell to form a SPION@HP core-shell system for anticancer drug delivery. The obtained formulation was characterized by techniques including transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), proton nuclear magnetic resonance (¹H-NMR), and powder X-ray diffraction (XRD).

View Article and Find Full Text PDF

Nanogel-based systems loaded with single anticancer drugs display miscellaneous effectiveness in tumor remission, gradually circumventing mutation and resistance in chemotherapy. Hence, the existence of dual-drug delivered nano-sized systems has been contemporaneous with drug development and preceded the conventional-dose chemotherapy. Among outstanding synergistic drug nanoplatforms, thermosensitive copolymer heparin-Pluronic F127 (Hep-F127) co-delivering cisplatin (CDDP) and curcumins (Cur) (Hep-F127/CDDP/Cur) has emerged as a notable candidate for temperature-responsive drug delivery.

View Article and Find Full Text PDF

Advances in thermosensitive polymer-grafted platforms for biomedical applications.

Mater Sci Eng C Mater Biol Appl

November 2018

Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam. Electronic address:

Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications.

View Article and Find Full Text PDF

Evolution and present scenario of multifunctionalized mesoporous nanosilica platform: A mini review.

Mater Sci Eng C Mater Biol Appl

October 2018

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29, District 12, Ho Chi Minh City 700000, Viet Nam. Electronic address:

The development of nanomaterials in the field of biomedical has attracted much attention in the past decades. New mesoporous nanosilica (MNS) generation, called multi functionalized MNS, presents the promising applications for efficient encapsulation, controlled release, and intracellular delivery of therapeutic agents due to their unique physiochemical properties, such as large surface area and pore volume, tunable particle size, biocompatibility, and high loading capacity. In this review, we intensively discussed the multi functionalized MNSs that respond to the demand of physical stimuli (thermo, light, magnetic field, ultrasound, and electricity), chemical stimuli (pH, redox, HO), and biological stimuli (enzyme, glucose, ATP), individual or in combination.

View Article and Find Full Text PDF

Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release.

Mater Sci Eng C Mater Biol Appl

January 2018

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29, District 12, Ho Chi Minh City, Vietnam. Electronic address:

In this report, poly(amide amine) (PAMAM) dendrimer and Heparin-grafted-monomethoxy polyethylene glycol (HEP-mPEG) were synthesized and characterized. In aqueous solution, the generation 4 PAMAM dendrimers (G4.0-PAMAM) existed as nanoparticles with particle size of 5.

View Article and Find Full Text PDF