16 results match your criteria: "Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg[Affiliation]"
Eur J Pharm Biopharm
September 2024
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle/Saale, Germany. Electronic address:
Based on the structure of the Stratum corneum (SC) the potential penetration/diffusion pathways of drugs and cosmetic actives through the SC are presented and discussed. The well-known lipophilic pathway across the SC is presented and relevant examples are used to show that highly lipophilic molecules such as glucocorticoids, coenzyme Q10 etc. are accumulated in the SC and penetrate into the inner liquid like layer of the SC lipid bilayer by lateral diffusion.
View Article and Find Full Text PDFMacromol Biosci
November 2023
Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120, Halle (Saale), Germany.
Elastin is an essential extracellular matrix protein that enables tissues and organs such as arteries, lungs, and skin, which undergo continuous deformation, to stretch and recoil. Here, an approach to fabricating artificial elastin with close-to-native molecular and mechanical characteristics is described. Recombinantly produced tropoelastin are polymerized through coacervation and allysine-mediated cross-linking induced by pyrroloquinoline quinone (PQQ).
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
June 2023
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany.
Biochim Biophys Acta Biomembr
October 2022
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany.
The human skin provides a physiochemical and biological protective barrier due to the unique structure of its outermost layer known as the Stratum corneum. This layer consists of corneocytes and a multi-lamellar lipid matrix forming a composite, which is a major determining factor for the barrier function of the Stratum corneum. A substantiated understanding of this barrier is necessary, as controlled breaching or modulation of the same is also essential for various health and personal care applications such as topical drug delivery and cosmetics to a name few.
View Article and Find Full Text PDFSkin Pharmacol Physiol
July 2021
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Halle/Saale, Germany,
This review is the second part of a series which presents the state of the art in stratum corneum (SC) lipid matrix (LM) research in depth. In this part, the various hypothetical models which were developed to describe the structure and function of the SC LM as the skin's barrier will be discussed. New as well as a cumulative assortment of older results which change the view on the different models are considered to conclude how well the different models are holding up today.
View Article and Find Full Text PDFElastin is an essential structural protein in the extracellular matrix of vertebrates. It is the core component of elastic fibers, which enable connective tissues such as those of the skin, lungs or blood vessels to stretch and recoil. This function is provided by elastin's exceptional properties, which mainly derive from a unique covalent cross-linking between hydrophilic lysine-rich motifs of units of the monomeric precursor tropoelastin.
View Article and Find Full Text PDFChem Phys Lipids
November 2018
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeckstr. 4, 06120 Halle/Saale, Germany. Electronic address:
This review is summarizing an important part of the state of the art in stratum corneum research. A complete overview on discoveries about the general biophysical and physicochemical properties of the known ceramide species' is provided. The ceramides are one of the three major components of the lipid matrix and mainly govern its properties and structure.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2019
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany. Electronic address:
This study used neutron diffraction to investigate a ceramide-[NP] C24/[AP] C24 /[EOS]-br C30/cholesterol/lignoceric acid (0.6: 0.3: 0.
View Article and Find Full Text PDFChem Phys Lipids
August 2018
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany; Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany. Electronic address:
For this study mixtures based on the ceramides [NS] (NS = non-hydroxy-sphingosine) and [AP] (AP = α-hydroxy-phytosphingosine) in a 2:1 and 1:2 ratio, together with cholesterol and lignoceric acid, were investigated. These mixtures are modelling the uppermost skin layer, the stratum corneum. Neutron diffraction, utilizing specifically deuterated ceramide molecules, was used to obtain a maximum amount of experimental detail.
View Article and Find Full Text PDFChem Phys Lipids
December 2017
Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Max Planckweg 8 2333 CE Leiden, The Netherlands.
Z Naturforsch C J Biosci
January 2018
Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany.
Three new glucosylceramides (GluCers) named malusides I-III (1-3) were isolated from apple (cultivars of Malus domestica) pomace (fruit material remaining after juice extraction). An unusual oxo/hydroxy group pattern within the sphingadienine (d18:2) type sphingoid base was observed. All compounds contained the same α-hydroxylated fatty acid (h16:0) and a β-D-glucose moiety.
View Article and Find Full Text PDFSoft Matter
March 2017
Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
The stratum corneum is the outermost layer of the skin and protects the organism against external influences as well as water loss. It consists of corneocytes embedded in a mixture of ceramides, fatty acids, and cholesterol in a molar ratio of roughly 1 : 1 : 1. The unique structural and compositional arrangement of these stratum corneum lipids is responsible for the skin barrier properties.
View Article and Find Full Text PDFChem Phys Lipids
April 2017
Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany.
The very heterogeneous group of ceramides is known to be mandatory for proper barrier functions of the outermost layer of mammalian skin, referred to as stratum corneum (SC). The synthesis of a specifically deuterated ceramide [AP]-C18 variant is described. The synthesized ceramide contains the racemic forms of the α hydroxy fatty acid.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
May 2017
Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany. Electronic address:
The stratum corneum (SC) provides the main barrier properties in native skin. The barrier function is attributed to the intercellular lipids, forming continuous multilamellar membranes. In this study, SC lipid membranes in model ratios were enriched with deuterated lipids in order to investigate structural and dynamical properties by neutron diffraction and H solid-state NMR spectroscopy.
View Article and Find Full Text PDFEur J Pharm Sci
March 2017
Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany. Electronic address:
Up to now, the molecular mechanism of the penetration enhancing effect of sucrose esters (SEs) on stratumcorneum (SC) has not been explained in details. In this study, variety of surface sensitive techniques, including surface pressure-area (π-A) isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM), have been used to investigate interactions between SEs and SC intercellular lipids. A monolayer of the mixture of ceramide AS C18:18, stearic acid and cholesterol in the molar ratio of 1:1:0.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2016
Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany. Electronic address:
The outermost layer of the mammalian skin, the stratum corneum (SC), is a very thin structure and realizes simultaneously the main barrier properties. The penetration barrier for xenobiotica is mostly represented by a complex lipid matrix. There is great interest in the subject of getting information about the arrangement of the lipids, which are mainly ceramides (CER), free fatty acids (FFA) and cholesterol (CHOL).
View Article and Find Full Text PDF