192,846 results match your criteria: "Institute of Advanced Science & Technology[Affiliation]"

Effect of Temperature on Magnetoimpedance Effect and Magnetic Properties of Fe- and Co-Rich Glass-Coated Microwires.

Materials (Basel)

January 2025

Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country, UPV/EHU, 20018 San Sebastian, Spain.

We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops and magnetic field dependence of the GMI ratio upon heating in both of the studied samples. We observed a noticeable improvement in the GMI ratio and a change in hysteresis loops from rectangular to inclined upon heating in Fe-rich microwire.

View Article and Find Full Text PDF

There is a growing focus on sustainability, characterized by making changes that anticipate future needs and adapting them to present requirements. Sustainability is reflected in various areas of materials science as well. Thus, more research is focused on the fabrication of advanced materials based on earth-abundant metals.

View Article and Find Full Text PDF

Improved Grain Boundary Reconstruction Method Based on Channel Attention Mechanism.

Materials (Basel)

January 2025

Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

The grain size of metal materials has a significant impact on their macroscopic properties. However, original metallographic images often suffer from issues such as substantial noise, missing grain boundaries, low contrast, and blurred edges. These challenges hinder the accurate extraction of complete grain boundaries, limiting the precision of grain size measurement and material performance prediction.

View Article and Find Full Text PDF

The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe salts and organic compounds in the stage of high-pressure leaching, requires the purchase of relatively expensive reagents in large quantities. The aim of this study was to investigate the possibility of the use of electrolytically reduced bauxite residue (BR) as a substitute for these reagents. Reduced BR was obtained from Al-goethite containing BR using a bulk cathode in alkaline suspension.

View Article and Find Full Text PDF

High-Mobility All-Transparent TFTs with Dual-Functional Amorphous IZTO for Channel and Transparent Conductive Electrodes.

Materials (Basel)

January 2025

Department of IT Semiconductor Convergence Engineering, Research Institute of Advanced Convergence Technology, Tech University of Korea, Siheung 15073, Republic of Korea.

The increasing demand for advanced transparent and flexible display technologies has led to significant research in thin-film transistors (TFTs) with high mobility, transparency, and mechanical robustness. In this study, we fabricated all-transparent TFTs (AT-TFTs) utilizing amorphous indium-zinc-tin-oxide (a-IZTO) as a dual-functional material for both the channel layer and transparent conductive electrodes (TCEs). The a-IZTO was deposited using radio-frequency magnetron sputtering, with its composition adjusted for both channel and electrode functionality.

View Article and Find Full Text PDF

Aggressive interactions between males are common when victors gain increased mating success but can result in severe injury or death for the defeated. (Hymenoptera: Eupelmidae) is a solitary egg parasitoid of hemipteran and lepidopteran species. Here, we investigated lethal interactions between males and analyzed aggression behavior scaled with the male condition, number of competitors, number of presented females, and female mating status.

View Article and Find Full Text PDF

Vaccines represent an essential tool for the prevention of infectious diseases. Upon administration, a complex interaction occurs between the vaccine formulation and the recipient's immune system, ultimately resulting in protection against disease. Significant variability exists in individual and population responses to vaccination, and these differences remain the focus of the ongoing research.

View Article and Find Full Text PDF

One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection.

Int J Mol Sci

January 2025

General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.

Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.

View Article and Find Full Text PDF

Environmental Exposure to Bisphenol A Enhances Invasiveness in Papillary Thyroid Cancer.

Int J Mol Sci

January 2025

Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.

View Article and Find Full Text PDF

Olaparib Combined with DDR Inhibitors Effectively Prevents EMT and Affects miRNA Regulation in -Mutated Epithelial Ovarian Cancer Cell Lines.

Int J Mol Sci

January 2025

Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.

Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial-mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and migratory capabilities, often driven by changing miRNA expression involved in the regulation of pathological processes like drug resistance.

View Article and Find Full Text PDF

The design of efficient advanced oxidation processes (AOPs) in the presence of bicarbonate has long attracted considerable attention in the field of environmental catalysis. In this study, sodium bicarbonate (NaHCO) as one of the most abundant substances in actual water, was introduced to a NaClO/Ru(III) system to enhance the removal of acid orange 7(AO7). NaHCO could significantly improve the removal efficiency of the Ru(III)/NaClO process in HCO at a pH range of 6.

View Article and Find Full Text PDF

Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.

View Article and Find Full Text PDF

Bile salt hydrolase (BSH), a probiotic-related enzyme with cholesterol-assimilating and anti-hypercholesterolemic abilities, has been isolated from intestinal bacteria; however, BSH activity of bacteria in bile-salt-free (non-intestinal) environments is largely unknown. Here, we aimed to identify BSH from non-intestinal and characterize its enzymatic function. We successfully isolated a plasmid-encoded () from , and the recombinant EfpBSH showed BSH activity that preferentially hydrolyzed taurine-conjugated bile salts, unlike the activity of known BSHs.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Current immune-modulating therapies are insufficient for 30-50% of patients or cause significant side effects, emphasizing the need for new treatments. Targeting the innate immune system and enhancing drug delivery to inflamed gut regions are promising strategies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.

View Article and Find Full Text PDF

and Extracts Mixture Target Pyroptosis in Ischemic Stroke via the NLRP3 Pathway.

Int J Mol Sci

January 2025

Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea.

Ischemic stroke, caused by blocked cerebral blood flow, requires prompt intervention to prevent severe motor and cognitive impairments. Despite extensive drug development efforts, the failure rate of clinical trials remains high, highlighting the need for novel therapeutic approaches. This study investigated the therapeutic potential of a natural herbal extract mixture of Bunge (AM) and Georgi (SB), traditionally used in Eastern Asian herbal medicine (EAHM) for ischemic stroke treatment.

View Article and Find Full Text PDF

The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells.

View Article and Find Full Text PDF

: While depression is associated with an increased risk of Alzheimer's dementia (AD), traditional AD-related biomarkers, such as amyloid-beta, have shown limited predictive value for late-life depression. Oxidative stress has emerged as a potential indicator given its shared role in both depression and dementia. This study investigated the longitudinal relationship between oxidative stress biomarkers and risk of dementia in patients with depression.

View Article and Find Full Text PDF

: Depression is a common geriatric problem globally. It is particularly burdensome in low- and middle-income countries, where care for older people mainly relies on the family in the absence of long-term care facilities. This study aimed to assess the level of caregivers' burden among family caregivers who are taking care of older persons with depression in the home care setting within the communities of Chiang Mai, Northern Thailand.

View Article and Find Full Text PDF

Over the past four decades, biofertilizers, which are microbial formulations based on species, have significantly contributed to sustainable agriculture by enhancing crop growth, improving soil health, and reducing the dependency on chemical fertilizers. species, particularly known for their ability to promote plant growth, fix nitrogen, solubilize phosphorus, and produce growth-promoting substances such as phytohormones and antibiotics, have emerged as key players in the development of eco-friendly agricultural solutions. This research utilizes bibliometric analysis based on 3,242 documents sourced from the Web of Science database to map the development, key contributions, and innovation within the field from 1985 to 2023.

View Article and Find Full Text PDF

Imaging in Periprosthetic Joint Infection Diagnosis: A Comprehensive Review.

Microorganisms

December 2024

International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA.

Various imaging methods assist in diagnosing periprosthetic joint infection (PJI). These include radiological techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US); as well as advanced nuclear medicine techniques including bone scintigraphy (BS), anti-granulocyte antibody imaging (AGS), leukocyte scintigraphy (LS), and fluorodeoxyglucose positron emission tomography (FDG-PET and FDG-PET/CT). Each imaging technique and radiopharmaceutical has been extensively studied, with unique diagnostic accuracy, limitations, and benefits for PJI diagnosis.

View Article and Find Full Text PDF

This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system.

View Article and Find Full Text PDF

Relay protection devices must operate continuously throughout the year without anomalies. With the integration of advanced technology and process chips in secondary equipment, new risks need to be addressed to ensure the reliability of these relay protection devices. One such risk is the impact of α-particles inducing single event effects (SEEs) on the secondary equipment.

View Article and Find Full Text PDF

Magnetic field-assisted control of magnetite location is a promising strategy for developing flexible, electrically conductive sensors with enhanced performance and adjustable properties. This study investigates the effect of static magnetic fields applied on thermoplastic elastomer (TPE) composites with magnetite and multi-walled carbon nanotubes (MWCNT). The composites were prepared by compression moulding and the magnetic field was applied on the mould cavity during processing.

View Article and Find Full Text PDF