25,975 results match your criteria: "Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo[Affiliation]"
JACS Au
January 2025
Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.
Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.
View Article and Find Full Text PDFRegen Biomater
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
During the implantation process of cardiovascular implants, vascular damage caused by inflammation occurs, and the inflammatory process is accompanied by oxidative stress. Currently, carbon monoxide (CO) has been demonstrated to exhibit various biological effects including vasodilatation, antithrombotic, anti-inflammatory, apoptosis-inducing and antiproliferative properties. In this study, hemoglobin/epigallocatechin-3-gallate (EGCG) core-shell nanoparticle-containing coating on stainless steel was prepared for CO loading and inflammation modulation.
View Article and Find Full Text PDFACS Sens
January 2025
Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
Recent examples of immune responses directed against the synthetic polymer poly(ethylene glycol) (PEG) have led to the development of biocompatible polymers, which are viewed as promising candidates to act as surrogate materials for use in biological applications, such as hydrophilic poly(2-oxazoline)s (POx). Despite this, the characterization of critical aspects of the immune response against these emerging materials is sparse, in part because no known monoclonal antibodies (mAbs) against this family of synthetic material have been reported. To advance the understanding of such responses, we report the successful isolation and characterization of hybridoma-derived mAbs with excellent specificity for different POx species and notable selectivity for highly branched polymer architectures over linear systems.
View Article and Find Full Text PDFRMD Open
January 2025
Department of Internal Medicine and Rheumatology, Schlosspark Klinik, University Medicine Berlin, Berlin, Germany.
Objectives: DARWIN 3 (ClinicalTrials.gov: NCT02065700) assessed the safety and efficacy of filgotinib in a long-term extension (LTE) of two phase II randomised controlled rheumatoid arthritis (RA) trials.
Methods: Eligible patients completing the 24-week DARWIN 1 (filgotinib plus methotrexate) and DARWIN 2 (filgotinib monotherapy) trials could enrol.
Int J Biol Macromol
January 2025
LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea; The Bacteriophage Bank of Korea, Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea. Electronic address:
Endolysins have drawn considerable attention as viable modalities for antibiotic use. The most significant obstacle for Gram-negative targeting endolysins is the presence of the outer membrane barrier. A heterologously expressed endolysin encoded by bacteriophage PBPA90 infecting Pseudomonas aeruginosa exhibited intrinsic antibacterial activity against P.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran; National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran. Electronic address:
Brucellosis, a significant zoonotic disease, poses a threat to both livestock and human health. Infections in livestock lead to abortion, infertility, and substantial economic losses in the industry. In humans, acute brucellosis can progress to a chronic condition, resulting in multisystemic infections with high morbidity and mortality rates.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; National Center for Neurological Disorders, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China. Electronic address:
Background: Central nervous system (CNS) accessibility constitutes a major hurdle for drug development to treat neurological diseases. Existing drug delivery methods rely on breaking the blood-brain barrier (BBB) for drugs to penetrate the CNS. Researchers have discovered natural microchannels between the skull bone marrow and the dura mater, providing a pathway for drug delivery through the skull bone marrow.
View Article and Find Full Text PDFACS Sens
January 2025
Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.
View Article and Find Full Text PDFEur Radiol
January 2025
Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.
Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.
J Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management.
View Article and Find Full Text PDFImmunol Invest
January 2025
Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
Background: Single-cell RNA sequencing (scRNA-seq) has improved our ability to characterize rare cell populations. In practice, cells from different tissues or donors are simultaneously loaded onto the instrument (multiplexed) at the recommended (standard loading) or higher (superloading) numbers to save time and money. Although cost-effective, superloading can stymie computational analyses owing to high multiplet rates and sample complexity.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
Although aberrant changes in grey and white matter are core features of idiopathic dystonia, few studies have explored the correlation between grey and white matter changes in this disease. This study aimed to investigate the coupling correlation between morphological and microstructural alterations in patients with idiopathic dystonia. Structural T1 imaging and diffusion tensor imaging were performed on a relatively large cohort of patients.
View Article and Find Full Text PDFMol Ther
January 2025
School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research (University of Hong Kong), Hong Kong SAR, China. Electronic address:
Centrosome aberrations are a common feature in human cancer cells. Our previous studies demonstrated that the centrosomal protein Tax1 binding protein 2 (TAX1BP2) inhibits centrosome overduplication and is underexpressed in hepatocellular carcinoma (HCC). Here, we report that Intratumoral TAX1BP2 promotes tumor lymphocyte infiltration and enhances the efficacy of anti-PD-1 therapy.
View Article and Find Full Text PDFSci Rep
January 2025
Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Environmental Engineering and Pro-Vice-Chancellor (Planning & Resources), University of Mauritius, Reduit, Mauritius.
Polyhydroxyalkanoates (PHAs) represent a promising class of biodegradable polyesters synthesized by various microorganisms as energy storage compounds. Their versatility and environmental friendliness make them potential candidates for replacing conventional plastics across numerous applications. However, challenges such as limited mechanical properties, high production costs, and thermal instability have hindered their widespread adoption.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1. Electronic address:
Type VI secretion systems (T6SS) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China. Electronic address:
Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China. Electronic address:
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
Encapsulated BV6 and SM164, two bivalent second mitochondria-derived activator of caspase (Smac) mimetics, in etoposide (ETO)-lipopolymer nanoparticles (NPs) have been developed to deplete inhibitor of apoptosis proteins (IAP), impair DNA, and produce antagonistic effects on glioblastoma multiforme (GBM) in nude mice. The NPs, composed of cocoa butter (CB) and polyvinyl alcohol (PVA), were stabilized by glycerol monostearate and Pluronic F-127, and grafted with transferrin (Tf) and wheat germ agglutinin (WGA) to dock the blood-brain barrier (BBB) and degenerated dopaminergic neurons. The dual-targeting NPs increased the BBB permeability of BV6, SM164 and ETO via recognizing Tf receptor (TfR) and N-acetylglucosamine that are abundantly expressed on brain microvascular endothelial cells.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.
View Article and Find Full Text PDFProg Biomed Eng (Bristol)
January 2025
East China University of Science and Technology, Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, Shanghai, 200237, CHINA.
Integrating biomedical electronic devices holds profound promise for advancements in healthcare and enhancing individuals' quality of life. However, the persistent challenges associated with the traditional batteries' limited lifespan and bulkiness hinder these devices' long-term functionality and consistent power supply. Here, we delve into the biology and material interfaces in self-powered medical devices by summarizing the intrinsic electric demands in humans, analyzing material and biological mechanisms for electricity generation and storage, and discussing the pathways toward self-chargeable powering.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Department of Biomedical Engineering, Toyo University, Saitama, Japan.
The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs.
View Article and Find Full Text PDF