9 results match your criteria: "Institute for Theoretical Biochemistry and Molecular Biology[Affiliation]"

Extremely long chain polyunsaturated fatty acids (ELCPs) with >24 carbons and four or more double bonds are normally found in excitatory tissues but have no known function, and are greatly increased in brain and other tissues of humans with peroxisomal disorders. Straight-chain acyl-CoA oxidase (AOX) catalyzes the first, rate-limiting step of peroxisomal beta-oxidation of very-long-chain saturated and unsaturated fatty acids. We have studied the polyunsaturated fatty acid metabolism of AOX knockout mice (AOX-/- as a model of human AOX deficiency (pseudo-neonatal adrenoleukodystrophy), and as a genetic tool to test the putative peroxisomal beta-oxidation involvement in polyunsaturated fatty acid synthesis.

View Article and Find Full Text PDF

Phospholipids containing docosahexaenoic acid (22:6n-3) have been proposed to be required as conformational cofactors for the functional assembly of membrane proteins such as rhodopsin, ion pumps and the various complexes of the mitochondrial electron transport chain (Infante, 1987, Mol. Cell. Biochem.

View Article and Find Full Text PDF

The recent literature on polyunsaturated fatty acid metabolism in phenylketonuria (PKU) is critically analyzed. The data suggest that developmental impairment of the accretion of brain arachidonic (20:4n-6) and docosahexaenoic (22:6n-3, DHA) acids is a major etiological factor in the microcephaly and mental retardation of uncontrolled PKU and maternal PKU. These fatty acids appear to be synthesized by the recently elucidated carnitine-dependent, channeled, mitochondrial fatty acid desaturases for which alpha-tocopherolquinone (alpha-TQ) is an essential enzyme cofactor.

View Article and Find Full Text PDF

The putative involvement of peroxisomal beta-oxidation in the biosynthetic pathway of docosahexaenoic acid (22:6n-3, DHA) synthesis is critically reviewed in light of experiments with two recently developed knockout mouse models for Zellweger syndrome, a peroxisomal disorder affecting brain development. These mice were generated by targeted disruption of the PEX2 and PEX5 peroxisomal assembly genes encoding targeting signal receptor peroxins for the recognition and transport of a set of peroxisomal enzymes, including those of peroxisomal beta-oxidation, to the peroxisomal matrix. Analysis of esterified 22:6n-3 concentrations in PEX2-/- and PEX5-/- mice do not support the hypothesized requirement of peroxisomal beta-oxidation in 22:6n-3 synthesis, as only brain, but not liver or plasma, 22:6n-3 levels were decreased.

View Article and Find Full Text PDF

A mechanistic definition of the dystrophic process is proposed, and the effects of growth factors vs. down-regulation of growth are critically analyzed. A conceptual scheme is presented to illustrate the steps leading to pathology, and various compensatory systems which ameliorate the pathology are examined, particularly in regards to the mdv mouse which is resistant to the deficiency of dystrophin, the main protein product of the Duchenne and Becker muscular dystrophy (DMD/BMD) gene.

View Article and Find Full Text PDF

A critical analysis of the changes in fatty acid patterns and their metabolism elicited by vitamin E deficiency leads to the proposal that a major role of dietary RRR-alpha-tocopherol (alpha-TOC) is as an enzymatic precursor of alpha-tocopherolquinone (alpha-TQ) whose semiquinone radical functions as an essential enzyme cofactor for the fatty acid desaturases of the recently elucidated carnitine-dependent, channeled, mitochondrial desaturation-elongation pathway; a detailed mechanism for its function is proposed. Pathophysiological states produced by vitamin E deficiency and alpha-TOC transfer protein defects, such as ataxia, myopathy, retinopathy, and sterility are proposed to develop from the effects of impaired alpha-TQ-dependent desaturases and the resulting deficiency of their polyenoic fatty acid products.

View Article and Find Full Text PDF

The recent literature on the putative involvement of a single cycle of peroxisomal beta-oxidation of 24:5n-6 and 24:6n-3 polyunsaturated fatty acids in the biosynthesis of the respective docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) fatty acids is critically reviewed. Present evidence suggests that in vitro data in support of the above proposition is an artifact of a low 2,4-dienoyl-CoA reductase activity due to depletion of NADPH resulting from incubation conditions. Kinetic studies with radiolabeled precursors in cell cultures have shown lower initial rates of labeling of 24:6n-3 than that of 22:6n-3, indicating that 24:6n-3 is an elongation product of 22:6n-3 rather than its precursor.

View Article and Find Full Text PDF

Alterations in the metabolism of arachidonic (20:4n-6), docosapentaenoic (22:5n-6), and docosahexaenoic (22:6n-3) acids and other polyunsaturated fatty acids in Zellweger syndrome and other peroxisomal disorders are reviewed. Previous proposals that peroxisomes are necessary for the synthesis of 22:6n-3 and 22:5n-6 are critically examined. The data suggest that 22:6n-3 is biosynthesized in mitochondria via a channelled carnitine-dependent pathway involving an n-3-specific delta-4 desaturase, while 20:4n-6, 20:5n-3 and 22:5n-6 are synthesized by both mitochondrial and microsomal systems; these pathways are postulated to be interregulated as compensatory-redundant systems.

View Article and Find Full Text PDF