84 results match your criteria: "Institute for Systems Analysis and Computer Science "Antonio Ruberti"[Affiliation]"

Nod-like Receptor Pyrin domain containing proteins (NLRPs) expressed by resident renal cells may contribute to the pathogenesis of multiple renal diseases. Cystinosis is a genetic disorder that affects kidney and particularly proximal tubular epithelial cells (PTEC). Here, we investigated the expression of NLRP family members in human control and cystinotic conditionally immortalized PTEC.

View Article and Find Full Text PDF

Background: miRNAs regulate the expression of several genes with one miRNA able to target multiple genes and with one gene able to be simultaneously targeted by more than one miRNA. Therefore, it has become indispensable to shorten the long list of miRNA-target interactions to put in the spotlight in order to gain insight into understanding the regulatory mechanism orchestrated by miRNAs in various cellular processes. A reasonable solution is certainly to prioritize miRNA-target interactions to maximize the effectiveness of the downstream analysis.

View Article and Find Full Text PDF

The variations in the membrane proteome of tomato fruit pericarp during ripening have been investigated by mass spectrometry-based label-free proteomics. Mature green (MG30) and red ripe (R45) stages were chosen because they are pivotal in the ripening process: MG30 corresponds to the end of cellular expansion, when fruit growth has stopped and fruit starts ripening, whereas R45 corresponds to the mature fruit. Protein patterns were markedly different: among the 1315 proteins identified with at least two unique peptides, 145 significantly varied in abundance in the process of fruit ripening.

View Article and Find Full Text PDF

Network medicine is a rapidly evolving new field of medical research, which combines principles and approaches of systems biology and network science, holding the promise to uncovering the causes and to revolutionize the diagnosis and treatments of human diseases. This new paradigm reflects the fact that human diseases are not caused by single molecular defects, but driven by complex interactions among a variety of molecular mediators. The complexity of these interactions embraces different types of information: from the cellular-molecular level of protein-protein interactions to correlational studies of gene expression and regulation, to metabolic and disease pathways up to drug-disease relationships.

View Article and Find Full Text PDF

The transcriptional regulatory structure of plant genomes is still relatively unexplored, and little is known about factors that influence expression variation in plants. We used a genetic system consisting of 10 heterozygous grape varieties with high consanguinity and high haplotypic diversity to: (i) identify regions of haplotype sharing through whole-genome resequencing and single-nucleotide polymorphism (SNP) genotyping; (ii) analyse gene expression through RNA-seq in four stages of berry development; and (iii) associate gene expression variation with genetic and epigenetic properties. We found that haplotype sharing in and around genes was positively correlated with similarity in expression and was negatively correlated with the fraction of differentially expressed genes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) involved in several biological processes and diseases. MiRNAs regulate gene expression at the posttranscriptional level, mostly downregulating their targets by binding specific regions of transcripts through imperfect sequence complementarity. Prediction of miRNA-binding sites is challenging, and target prediction algorithms are usually based on sequence complementarity.

View Article and Find Full Text PDF

Purpose: Several studies have shown that different tumour types sharing a driver gene mutation do not respond uniformly to the same targeted agent. Our aim was to use an unbiased network-based approach to investigate this fundamental issue using BRAF mutant tumours and the BRAF inhibitor vemurafenib.

Methods: We applied SWIM, a software able to identify putative regulatory (switch) genes involved in drastic changes to the cell phenotype, to gene expression profiles of different BRAF mutant cancers and their normal counterparts in order to identify the switch genes that could potentially explain the heterogeneity of these tumours' responses to vemurafenib.

View Article and Find Full Text PDF

The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy.

View Article and Find Full Text PDF

JARID1B/KDM5B histone demethylase's mRNA is markedly overexpressed in breast cancer tissues and cell lines and the protein has been shown to have a prominent role in cancer cell proliferation and DNA repair. However, the mechanism of its post-transcriptional regulation in cancer cells remains elusive. We performed a computational analysis of transcriptomic data from a set of 103 breast cancer patients, which, along with JARID1B upregulation, showed a strong downregulation of 2 microRNAs (miRNAs), mir-381 and mir-486, potentially targeting its mRNA.

View Article and Find Full Text PDF

Background: It is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to sustain tumor growth. These cells - called cancer stem-like cells - share certain phenotypic characteristics with untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies.

View Article and Find Full Text PDF

Metabolic surgery improves insulin resistance and is associated with the remission of type 2 diabetes, but the mechanisms involved remain unknown. We find that human jejunal mucosa secretes heat shock proteins (HSPs) in vitro, in particular HSP70 and GRP78. Circulating levels of HSP70 are higher in people resistant to insulin, compared to the healthy and normalize after duodenal-jejunal bypass.

View Article and Find Full Text PDF

Network medicine relies on different types of networks: from the molecular level of protein⁻protein interactions to gene regulatory network and correlation studies of gene expression. Among network approaches based on the analysis of the topological properties of protein⁻protein interaction (PPI) networks, we discuss the widespread DIAMOnD (disease module detection) algorithm. Starting from the assumption that PPI networks can be viewed as maps where diseases can be identified with localized perturbation within a specific neighborhood (i.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Glioblastoma, the most malignant brain cancer, contains self-renewing, stem-like cells that sustain tumor growth and therapeutic resistance. Identifying genes promoting stem-like cell differentiation might unveil targets for novel treatments. To detect them, here we apply SWIM - a software able to unveil genes (named switch genes) involved in drastic changes of cell phenotype - to public datasets of gene expression profiles from human glioblastoma cells.

View Article and Find Full Text PDF

Summary: With increased generation of high-resolution sequence-based 'Omics' data, detecting statistically significant effects at different genomic locations and scales has become key to addressing several scientific questions. IWTomics is an R/Bioconductor package (integrated in Galaxy) that, exploiting sophisticated Functional Data Analysis techniques (i.e.

View Article and Find Full Text PDF

Background: Circular RNAs are a class of endogenous RNAs with various functions in eukaryotic cells. Worthy of note, circular RNAs play a critical role in cancer. Currently, nothing is known about their role in head and neck squamous cell carcinoma (HNSCC).

View Article and Find Full Text PDF

Increasing evidence points to a key role played by epithelial-mesenchymal transition (EMT) in cancer progression and drug resistance. In this study, we used and approaches to investigate whether EMT phenotypes are associated to resistance to target therapy in a non-small cell lung cancer model system harboring activating mutations of the epidermal growth factor receptor. The combination of different analysis techniques allowed us to describe intermediate/hybrid and complete EMT phenotypes respectively in HCC827- and HCC4006-derived drug-resistant human cancer cell lines.

View Article and Find Full Text PDF

Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements.

View Article and Find Full Text PDF

Proteins are the core and the engine of every process in cells thus the study of mechanisms that drive the regulation of protein expression, is essential. Transcription factors play a central role in this extremely complex task and they synergically co-operate in order to provide a fine tuning of protein expressions. In the present study, we designed a mathematically well-founded procedure to investigate the mutual positioning of transcription factors binding sites related to a given couple of transcription factors in order to evaluate the possible association between them.

View Article and Find Full Text PDF

Grapevine () berry development involves a succession of physiological and biochemical changes reflecting the transcriptional modulation of thousands of genes. Although recent studies have investigated the dynamic transcriptome during berry development, most have focused on a single grapevine variety, so there is a lack of comparative data representing different cultivars. Here, we report, to our knowledge, the first genome-wide transcriptional analysis of 120 RNA samples corresponding to 10 Italian grapevine varieties collected at four growth stages.

View Article and Find Full Text PDF

Purpose: Leptin (LEP) is a peptide hormone with multiple physiological functions. Besides its systemic actions, it has important peripheral roles such as a mitogen action on keratinocytes following skin lesions. We previously showed that LEP mRNA is significantly induced in response to neutron irradiation in mouse skin and that the protein increases in the irradiated epidermis and in the related subcutaneous adipose tissue.

View Article and Find Full Text PDF

Background And Objective: The cause of the Alzheimer's disease is poorly understood and to date no treatment to stop or reverse its progression has been discovered. In developed countries, the Alzheimer's disease is one of the most financially costly diseases due to the requirement of continuous treatments as well as the need of assistance or supervision with the most cognitively demanding activities as time goes by. The objective of this work is to present an automated approach for classifying the Alzheimer's disease from magnetic resonance imaging (MRI) patient brain scans.

View Article and Find Full Text PDF

Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB.

Neurobiol Dis

July 2017

Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Italy. Electronic address:

The serpinopathies are human pathologies caused by mutations that promote polymerisation and intracellular deposition of proteins of the serpin superfamily, leading to a poorly understood cell toxicity. The dementia FENIB is caused by polymerisation of the neuronal serpin neuroserpin (NS) within the endoplasmic reticulum (ER) of neurons. With the aim of understanding the toxicity due to intracellular accumulation of neuroserpin polymers, we have generated transgenic neural progenitor cell (NPC) cultures from mouse foetal cerebral cortex, stably expressing the control protein GFP (green fluorescent protein), or human wild type, G392E or delta NS.

View Article and Find Full Text PDF

SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance.

View Article and Find Full Text PDF

Recent findings have identified competing endogenous RNAs (ceRNAs) as the drivers in many disease conditions, including cancers. The ceRNAs indirectly regulate each other by reducing the amount of microRNAs (miRNAs) available to target messenger RNAs (mRNAs). The ceRNA interactions mediated by miRNAs are modulated by a titration mechanism, i.

View Article and Find Full Text PDF