A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmi5s0dg8gmjfdnlhv3tbhm9k1psq43q1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Institute for Stem-cell Biology[Affilia... Publications | LitMetric

4,007 results match your criteria: "Institute for Stem-cell Biology[Affiliation]"

Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis.

View Article and Find Full Text PDF

Aims: This phase I trial assessed the safety and potential efficacy of monthly 3 dose intravenous infusion of allogeneic bone marrow-derived clonal mesenchymal stromal cells (BM-cMSCs) in refractory rheumatoid arthritis (RA) patients over 24 weeks.

Patients & Methods: Six patients with refractory RA received BM-cMSC infusions at one-month intervals over a 24-week period. Safety outcomes included adverse events (AEs) and serious adverse events (SAEs).

View Article and Find Full Text PDF

Traumatic brain Injury: Comprehensive overview from pathophysiology to Mesenchymal stem Cell-Based therapies.

Int Immunopharmacol

December 2024

Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:

Traumatic brain injury (TBI) is a disastrous phenomenon which is considered to cause high mortality and morbidity rate. Regarding the importance of TBI due to its prevalence and its effects on the brain and other organs, finding new therapeutic methods and improvement of conventional therapies seems to be vital. TBI involves a complex physiological mechanism, with inflammation being a key component among various contributing factors.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is the most common form of diabetic neuropathy, representing 75% of cases and posing a substantial public health challenge. Emerging evidence from animal studies indicates that stem cell therapy holds significant promise as a potential treatment for diabetic neuropathy. Nevertheless, a comprehensive evaluation of the safety and efficacy of stem cell therapy for DPN in animal studies remains outstanding.

View Article and Find Full Text PDF

Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells.

STAR Protoc

December 2024

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs.

View Article and Find Full Text PDF

The cell replacement therapeutic potential of human pluripotent stem cells.

Expert Opin Biol Ther

December 2024

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

Introduction: The remarkable ability of human pluripotent stem cells (hPSCs) to differentiate into specialized cells of the human body emphasizes their immense potential in treating various diseases. Advances in hPSC technology are paving the way for personalized and allogeneic cell-based therapies. The first-in-human studies showed improved treatment of diseases with no adverse effects, which encouraged the industrial production of this type of medicine.

View Article and Find Full Text PDF

Background: Poly (β-amino Ester) nanocarriers show promise for gene therapy, but their effectiveness can be limited by the environment within the body. This study aims to understand how common cell culture media components affect optimized PBAE nanocarrier performance in gene delivery.

Methods: Optimized PBAE was synthesized based on Michael addition reaction and characterized by different assays, this study employed techniques like DLS and TEM to characterize PBAE nanocarriers, followed by cellular uptake analysis (flow cytometry and confocal imaging) and evaluation of gene expression under different polymer/DNA ratio ratios and media conditions.

View Article and Find Full Text PDF

Elevated hematopoietic stem cell frequency in mouse alveolar bone marrow.

Stem Cell Reports

December 2024

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan. Electronic address:

Hematopoietic stem cells (HSCs) are crucial for maintaining hematopoietic homeostasis and are localized within distinct bone marrow (BM) niches. While BM niches are often considered similar across different skeletal sites, we discovered that the alveolar BM (al-BM) in the mandible harbors the highest frequency of immunophenotypic HSCs in nine different skeletal sites. Transplantation assays revealed significantly increased engraftment from al-BM compared to femur, tibia, or pelvis BM, likely due to a higher proportion of alveolar HSCs.

View Article and Find Full Text PDF

Context: Telomeres maintain chromosome stability and mark cellular aging, and their shortening with age compromises genomic stability.

Objective: The purpose of this study was to conduct a meta-analysis of existing evidence to evaluate the relationship between the maternal pregnancy body mass index (BMI) and children's telomere length (TL).

Data Source: Web of Science, Scopus, and PubMed databases were systematically searched from their inception to August 27, 2023, for pertinent observational studies.

View Article and Find Full Text PDF

Response to Letter to the Editor.

J Thorac Oncol

December 2024

Department of Radiation Oncology, Stanford University, Stanford, California; Stanford Cancer Institute, Stanford University, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California. Electronic address:

View Article and Find Full Text PDF

Developing a multi-epitope vaccine against Helicobacter Pylori.

Hum Immunol

December 2024

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden. Electronic address:

Helicobacter pylori, a significant factor in the development of gastric cancer and peptic ulcers, poses challenges for drug development due to its resilience. Computational approaches offer potential solutions for effective vaccine development targeting its antigens while ensuring stability and safety. The four critical antigenic proteins included in this study's innovative vaccine design are neuraminyllactose-binding hemagglutinin (HpaA), catalase (KatA), urease (UreB), and vacuolating toxin (VacA).

View Article and Find Full Text PDF

Efficacy of 3D-printed chitosan‑cerium oxide dressings coated with vancomycin-loaded alginate for chronic wounds management.

Carbohydr Polym

February 2025

Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Institute for Engineering in Medicine, Health, & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA.

Multifunctional wound dressings with antibacterial and antioxidant properties hold significant promise for treating chronic wounds; however, achieving a balance of these characteristics while maintaining biocompatibility is challenging. To enhance this balance, this study focuses on the design and development of 3D-printed chitosan-matrix composite scaffolds, which are incorporated with varying amounts of cerium oxide nanoparticles (0, 1, 3, 5, and 7 wt%) and subsequently coated with a vancomycin-loaded alginate layer. The structure, antibiotic drug delivery kinetics, biodegradation, swelling, biocompatibility, antibacterial, antioxidant, and cell migration behaviors of the fabricated dressings were evaluated in-vitro.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) induces an acute reactive state of microglia, which contribute to secondary injury processes through phagocytic activity and release of cytokines. Several receptor tyrosine kinases (RTK) are activated in microglia upon TBI, and their blockade may reduce the acute inflammation and decrease the secondary loss of neurons; thus, RTKs are potential therapeutic targets. We have previously demonstrated that several members of the Fibroblast Growth Factor Receptor (FGFR) family are transiently phosporylated upon TBI; the availability for drug repurposing of FGFR inhibitors makes worthwhile the elucidation of the role of FGFR in the acute phases of the response to TBI and the effect of FGFR inhibition.

View Article and Find Full Text PDF

Posterior iliac crest vs. proximal tibia: distinct sources of anti-inflammatory and regenerative cells with comparable 6-month clinical outcomes in treatment of osteoarthritis.

J Transl Med

December 2024

Department of Orthopedics and Trauma Surgery, Fondazione IRCCS "Casa Sollievo Della Sofferenza", Viale Dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.

Background: Human bone marrow is a source of mesenchymal stem cells (MSCs), other progenitor cells, and factors with anti-inflammatory and regenerative capacity. Though the fraction of MSCs out of the nucleated cells is very small, bone marrow aspirate (BMA) for osteoarthritis (OA) has noteworthy effects. BMA is usually collected from the posterior or anterior iliac crest, and rarely from the proximal tibia.

View Article and Find Full Text PDF

Objectives: The COVID-19 pandemic has challenged global health systems since December 2019, with the novel virus SARS-CoV-2 causing multi-systemic disease, including heart complications. While acute cardiac effects are well-known, long-term implications are understudied. This review hopes to fill a gap in the literature and provide valuable insights into the long-term cardiac consequences of the virus, which can inform future public health policies and clinical practices.

View Article and Find Full Text PDF

Long-range regulation of transcription scales with genomic distance in a gene-specific manner.

Mol Cell

November 2024

Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institutes, Stanford University, Stanford, CA 94305, USA. Electronic address:

Although critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here, we bypass the need for sequence-specific transcription factors (TFs) and recruit activators directly using a chimeric array of gRNA oligos to target dCas9 fused to the activator VP64-p65-Rta (CARGO-VPR). We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible when targeted with a single guide.

View Article and Find Full Text PDF

Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis.

View Article and Find Full Text PDF

Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties.

ACS Biomater Sci Eng

November 2024

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.

Article Synopsis
  • Sufficient blood flow and a good vascular system are essential for delivering nutrients and oxygen in biomaterials used for medical purposes.
  • Exploring the best physical properties of these biomaterials, like pore structure and stiffness, can enhance their ability to develop blood vessels, improving their effectiveness in tissue engineering.
  • Understanding these properties can help create better research models and personalized treatments for issues like bone regeneration, wound healing, islet transplantation, and heart repair.
View Article and Find Full Text PDF

Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer.

Pathol Res Pract

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps.

View Article and Find Full Text PDF

Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences.

View Article and Find Full Text PDF

The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9.

View Article and Find Full Text PDF

Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells.

View Article and Find Full Text PDF

The COVID-19 pandemic has had a significant impact on the global economy. It also provided insights into how the looming global climate crisis might be addressed, as there are several similarities between the challenges proposed by COVID-19 and those expected from the coming climate emergency. COVID-19 is an immediate health threat, but climate change represents a more gradual and insidious risk that will lead to long-term consequences for human health.

View Article and Find Full Text PDF
Article Synopsis
  • * Diabetic rats received HAM scaffolds with and without curcumin for 21 days, with evaluations showing significant improvements in wound healing parameters like closure rates, cellular regeneration, and collagen deposition in both treated groups.
  • * The results indicated that the combined treatment (HAMS/β/C group) outperformed the HAM-only treatment in nearly all healing metrics, while also reducing inflammation, showcasing a potentially effective method for diabetic wound management.
View Article and Find Full Text PDF

Generation of iPSC-derived human venous endothelial cells for the modeling of vascular malformations and drug discovery.

Cell Stem Cell

November 2024

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China. Electronic address:

Venous malformations (VMs) represent prevalent vascular anomalies typically attributed to non-inherited somatic mutations within venous endothelial cells (VECs). The lack of robust disease models for VMs impedes drug discovery. Here, we devise a robust protocol for the generation of human induced VECs (iVECs) through manipulation of cell-cycle dynamics via the retinoic signaling pathway.

View Article and Find Full Text PDF