94 results match your criteria: "Institute for Stem Cell Science and Regenerative Medicine INSTEM[Affiliation]"

Isolation and Quantification of Mouse γδT-cells and .

Bio Protoc

September 2021

IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India.

The skin plays an important role in protecting the body from pathogens and chemicals in the external environment. Upon injury, a healing program is rapidly initiated and involves extensive intercellular communication to restore tissue homeostasis. The deregulation of this crosstalk can lead to abnormal healing processes and is the foundation of many skin diseases.

View Article and Find Full Text PDF

O-Glycans on cell surfaces play important roles in cell-cell, cell-matrix and receptor-ligand interaction. Therefore, glycan-based interactions are important for tissue regeneration and homeostasis. Free-living flatworm Schmidtea mediterranea, because of its robust regenerative potential, is of great interest in the field of stem cell biology and tissue regeneration.

View Article and Find Full Text PDF

Scanning electron microscopy of murine skin ultrathin sections and cultured keratinocytes.

STAR Protoc

September 2021

A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A∗STAR) 8A Biomedical Grove, #6-11 Immunos, Singapore 138648, Singapore.

Generating high-quality electron microscopy images of the skin and keratinocytes can be challenging. Here we describe a simple protocol for scanning electron microscopy (SEM) of murine skin. The protocol enables characterization of the ultrastructure of the epidermis, dermis, hair follicles, basement membrane, and cell-cell junctions.

View Article and Find Full Text PDF

Precise development of the dendritic architecture is a critical determinant of mature neuronal circuitry. MicroRNA (miRNA)-mediated regulation of protein synthesis plays a crucial role in dendritic morphogenesis, but the role of miRNA-induced silencing complex (miRISC) protein components in this process is less studied. Here, we show an important role of a key miRISC protein, the GW182 paralog TNRC6A, in the regulation of dendritic growth.

View Article and Find Full Text PDF

Advances in targeting the WNT/β-catenin signaling pathway in cancer.

Drug Discov Today

January 2022

Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA. Electronic address:

WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins.

View Article and Find Full Text PDF

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2.

View Article and Find Full Text PDF

A series of 1,2,3-trisubstituted indolizines (, and ) were screened for whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) (MTB) strains. Compounds , , and were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines.

View Article and Find Full Text PDF

Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders.

Neurochem Int

July 2021

Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India. Electronic address:

The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour.

View Article and Find Full Text PDF

In changing environments, cells modulate resource budgeting through distinct metabolic routes to control growth. Accordingly, the TORC1 and SNF1/AMPK pathways operate contrastingly in nutrient replete or limited environments to maintain homeostasis. The functions of TORC1 under glucose and amino acid limitation are relatively unknown.

View Article and Find Full Text PDF

The skin is the largest organ that protects our body from the external environment and it is constantly exposed to pathogenic insults and injury. Repair of damage to this organ is carried out by a complex process involving three overlapping phases of inflammation, proliferation and remodeling. Histological analysis of wounded skin is a convenient approach to examine broad alterations in tissue architecture and investigate cells in their indigenous microenvironment.

View Article and Find Full Text PDF

Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells.

Dev Cell

March 2021

Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore. Electronic address:

Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin.

View Article and Find Full Text PDF

Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death.

View Article and Find Full Text PDF

Phosphates are ubiquitous molecules that enable critical intracellular biochemical reactions. Therefore, cells have elaborate responses to phosphate limitation. Our understanding of long-term transcriptional responses to phosphate limitation is extensive.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic heart muscle disease characterized by hypertrophy with preserved or increased ejection fraction in the absence of secondary causes. However, recent studies have demonstrated that a substantial proportion of individuals with HCM also have comorbid diabetes mellitus (~10%). Whether genetic variants may contribute a combined phenotype of HCM and diabetes mellitus is not known.

View Article and Find Full Text PDF

tRNA-derived fragments (tRFs) have recently gained a lot of scientific interest due to their diverse regulatory roles in several cellular processes. However, their function in dynamic biological processes such as development and regeneration remains unexplored. Here, we show that tRFs are dynamically expressed during planarian regeneration, suggesting a possible role for these small RNAs in the regulation of regeneration.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems.

View Article and Find Full Text PDF

Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release.

View Article and Find Full Text PDF

Growth and starvation are considered opposite ends of a spectrum. To sustain growth, cells use coordinated gene expression programs and manage biomolecule supply in order to match the demands of metabolism and translation. Global growth programs complement increased ribosomal biogenesis with sufficient carbon metabolism, amino acid and nucleotide biosynthesis.

View Article and Find Full Text PDF

Studies in different animal model systems have revealed the impact of odors on immune cells; however, any understanding on why and how odors control cellular immunity remained unclear. We find that employ an olfactory-immune cross-talk to tune a specific cell type, the lamellocytes, from hematopoietic-progenitor cells. We show that neuronally released GABA derived upon olfactory stimulation is utilized by blood-progenitor cells as a metabolite and through its catabolism, these cells stabilize Sima/HIFα protein.

View Article and Find Full Text PDF

In the age of genomics-based crop improvement, a high-quality genome of a local landrace adapted to the local environmental conditions is critically important. Grain amaranths produce highly nutritional grains with a multitude of desirable properties including C4 photosynthesis highly sought-after in other crops. For improving the agronomic traits of grain amaranth and for the transfer of desirable traits to dicot crops, a reference genome of a local landrace is necessary.

View Article and Find Full Text PDF

Methionine, through -adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown.

View Article and Find Full Text PDF

The role of microscopic elasticity of nano-carriers in cellular uptake is an important aspect in biomedical research. Herein we have used AFM nano-indentation force spectroscopy and Förster resonance energy transfer (FRET) measurements to probe microelastic properties of three novel cationic liposomes based on di-alkyl dihydroxy ethyl ammonium chloride based lipids having asymmetry in their hydrophobic chains (Lip1818, Lip1814 and Lip1810). AFM data reveals that symmetry in hydrophobic chains of a cationic lipid (Lip1818) imparts higher rigidity to the resulting liposomes than those based on asymmetric lipids (Lip1814 and Lip1810).

View Article and Find Full Text PDF

Methylenetetrahydrofolate reductase (MTHFR) links the folate cycle to the methionine cycle in one-carbon metabolism. The enzyme is known to be allosterically inhibited by SAM for decades, but the importance of this regulatory control to one-carbon metabolism has never been adequately understood. To shed light on this issue, we exchanged selected amino acid residues in a highly conserved stretch within the regulatory region of yeast MTHFR to create a series of feedback-insensitive, deregulated mutants.

View Article and Find Full Text PDF