9 results match your criteria: "Institute for Semiconductor Technology[Affiliation]"

Temperature-dependent photo-elastic coefficient of silicon at 1550 nm.

Sci Rep

November 2023

Institute for Semiconductor Technology, Technical University of Braunschweig, Hans-Sommer-Str. 66, 38106, Brunswick, Germany.

This paper presents a study on the temperature dependent photo-elastic coefficient in single-crystal silicon with (100) and (110) orientations at a wavelength of 1550 nm. The measurement of the photo-elastic coefficient was performed using a polarimetric scheme across a wide temperature range from 5 to 300 K. The experimental setup employed high-sensitivity techniques and incorporated automatic beam path correction, ensuring precise and accurate determination of the coefficient's values.

View Article and Find Full Text PDF

Color QR Codes are often generated to encode digital information, but one also could use colors or to allocate colors in a QR Code to act as a color calibration chart. In this dataset, we present several thousand QR Codes images generated with two different colorization algorithms (random and back-compatible) and several tuning variables in these color encoding. The QR Codes were also exposed to three different channel conditions (empty, augmentation and real-life).

View Article and Find Full Text PDF

Hydrogenation is a promising technique to prepare black TiO (H-TiO ) for solar water splitting, however, there remain limitations such as severe preparation conditions and underexplored hydrogenation mechanisms to inefficient hydrogenation and poor photoelectrochemical (PEC) performance to be overcome for practical applications. Here, a room-temperature and rapid plasma hydrogenation (RRPH) strategy that realizes low-energy hydrogen ions of below 250 eV to fabricate H-TiO nanorods with controllable disordered shell, outperforming incumbent hydrogenations, is reported. The mechanisms of efficient RRPH and enhanced PEC activity are experimentally and theoretically unraveled.

View Article and Find Full Text PDF

The first-principles calculation of pristine, B-, Al-, Ga-, Sb-, and Bi-doped blue phosphorene (BlueP) with adsorbed SO, NO, and NO gas molecules including the transport and optical properties is reported. The electronic structures of pristine and doped BlueP are investigated, and the modifications in electronic band structures and density (DOS) of states are studied. The most considerable adsorption energies of BlueP after being exposed to paramagnetic gas molecules NO and NO show excellent sensitivity to the considered gas molecules, which is confirmed by the current-voltage characteristics.

View Article and Find Full Text PDF

Ultrafine Aerosol Particle Sizer Based on Piezoresistive Microcantilever Resonators with Integrated Air-Flow Channel.

Sensors (Basel)

May 2021

Institute for Semiconductor Technology and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Str. 66/Langer Kamp 6a, 38106 Braunschweig, Germany.

To monitor airborne nano-sized particles (NPs), a single-chip differential mobility particle sizer (DMPS) based on resonant micro cantilevers in defined micro-fluidic channels (µFCs) is introduced. A size bin of the positive-charged fraction of particles herein is separated from the air stream by aligning their trajectories onto the cantilever under the action of a perpendicular electrostatic field of variable strength. We use previously described µFCs and piezoresistive micro cantilevers (PMCs) of 16 ng mass fabricated using micro electro mechanical system (MEMS) technology, which offer a limit of detection of captured particle mass of 0.

View Article and Find Full Text PDF

The physical laws of diffraction limit the spatial resolution of optical systems. In contrary to most superresolution microscopy approaches used today, in our novel idea we are aiming to overcome this limit by developing a spatially resolved illumination source based on semiconductor nanoscale light emitting diode (nanoLED) arrays with individual pixel control. We present and discuss the results of optical simulations performed for such nanoLED emitter arrays and analyze the theoretical limits of this approach.

View Article and Find Full Text PDF

Recently, colored H-doped TiO (H-TiO) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO and understand the physical insight of enhanced PEC performance.

View Article and Find Full Text PDF

The long-term stability of InGaN photoanodes in liquid environments is an essential requirement for their use in photoelectrochemistry. In this paper, we investigate the relationships between the compositional changes at the surface of n-type In(x)Ga(1-x)N (x ∼ 0.10) and its photoelectrochemical stability in phosphate buffer solutions with pH 7.

View Article and Find Full Text PDF

3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.

View Article and Find Full Text PDF