72,153 results match your criteria: "Institute for Regenerative Medicine & Biotherapy IRMB[Affiliation]"

Targeting CD84 protein on myeloid-derived suppressor cells as a novel immunotherapy in solid tumors.

Comput Methods Programs Biomed

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden. Electronic address:

Background And Objective: Myeloid-derived suppressor cells (MDSCs) are a crucial and diverse group of cells found in the tumor microenvironment (TME) that facilitate progression, invasion, and metastasis within solid tumors. CD84, a homophilic adhesion molecule expressed on MDSCs, plays a critical role in their accumulation and function within the TME. This study aims to investigate the protein-protein interactions of CD84 using molecular dynamics simulations and to explore potential therapeutic strategies targeting these interactions.

View Article and Find Full Text PDF

Synthetic cells in tissue engineering.

Curr Opin Biotechnol

January 2025

INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom. Electronic address:

Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation.

View Article and Find Full Text PDF

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Elevated Neutrophil-to-Lymphocyte Ratio Predicts Prognosis in Acute Myocarditis.

JACC Heart Fail

January 2025

King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom; King's College Hospital NHS Foundation Trust, London, United Kingdom. Electronic address:

Background: Neutrophil-to-lymphocyte ratio (NLR) is an easy-to-use inflammatory biomarker. Baseline NLR is independently associated with incident cardiovascular events and all-cause mortality. However, whether this applies to acute myocarditis (AM) has not been evaluated.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a major contributor to chronic back pain and disability, with limited effective therapeutic options. Current treatment options, including conservative management and surgical interventions, often fail to effectively halt disease progression and come with notable side effects. IVDD is characterized by the breakdown of the extracellular matrix (ECM) and the infiltration of inflammatory cells, which exacerbate disc degeneration.

View Article and Find Full Text PDF

Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is an incurable disease initiated by endothelial dysfunction, secondary to vascular inflammation and occlusive pulmonary arterial vascular remodeling, resulting in elevated pulmonary arterial pressure and right heart failure. Previous research has reported that dysfunction of type 2 bone morphogenetic protein receptor (BMPR2) signaling pathway in endothelium is inclined to prompt inflammation in PAH models, but the underlying mechanism of BMPR2 deficiency-mediated inflammation needs further investigation. This study was designed to investigate whether BMPR2 deficiency contributes to pulmonary arterial hypertension via the NLRP3 (NOD-like receptor family protein 3)/GSDME (gasdermin E)-mediated pyroptosis pathway.

View Article and Find Full Text PDF

Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.

Adv Healthc Mater

January 2025

Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Eggshell membrane (ESM) is a rich source of bioactive compounds, including proteins, peptides, and antioxidants, contributing to its potential therapeutic benefits. These natural antioxidants might help neutralize reactive oxygen species (ROS) and modulate inflammatory responses, which are often linked with chondrocyte damage in osteoarthritis. In this study, we investigated the functional effects of ESM proteins on HO-induced oxidative stress in a neonatal canine chondrocytes.

View Article and Find Full Text PDF

Background: Operative mortality for high-grade liver injury (HGLI) remains 42% to 66%, with near-universal mortality after retrohepatic caval injury. The objective of this study was to evaluate mortality and complications of operative and nonoperative management (OM and NOM) of HGLI at our institution, characterized by a trauma surgery-liver surgery collaborative approach to trauma care.

Methods: This was an observational cohort study of adult patients (age ≥16) with HGLI (The American Association for Surgery of Trauma (AAST) grades IV and V) admitted to an urban level I trauma center from January 2010 to November 2021.

View Article and Find Full Text PDF

Background And Objective: We evaluated the effectiveness of injecting autologous adipose-derived regenerative cells (ADRCs) into plaque in men with chronic Peyronie's disease (PD).

Methods: This pilot safety study recruited 22 Danish men with chronic PD from an outpatient clinic. Patients received one bolus of ADRCs injected into plaque, with follow-ups at 1, 3, 6, and 12 mo.

View Article and Find Full Text PDF

Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.

View Article and Find Full Text PDF

Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects.

View Article and Find Full Text PDF

Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery.

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Objective: Regenerative therapy using stem cells to treat cerebral infarction is currently in the research phase. However, this method is costly. It also faces other significant challenges, including optimization of timing, delivery methods, and dosage.

View Article and Find Full Text PDF

Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices.

View Article and Find Full Text PDF

Introduction: An efficient procedure was reported for the synthesis of novel hybrid dithiazoles 7 and thiazoles 15, in good yields, by applying hydrazonyl chlorides 4 with thiocarbohydrazone derivatives 3 and 12.

Methods: The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.

Results: According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents.

View Article and Find Full Text PDF

Objective: To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.

Methods: Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan).

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are increased in rheumatoid arthritis-associated interstitial lung disease.

Respir Res

January 2025

Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.

Background: Neutrophil extracellular trap (NET) formation has been implicated as a pathogenic mechanism in both rheumatoid arthritis (RA) and interstitial lung disease (ILD). However, the role of NETs in RA-associated ILD (RA-ILD) and the mechanisms driving NET formation remain unclear. This study aimed to assess the involvement of NETs in RA-ILD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size.

View Article and Find Full Text PDF

Tolerance to dietary antigens is critical for avoiding deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens are poorly understood. Here we demonstrate that the goblet-cell-derived resistin-like molecule β (RELMβ) is a critical regulator of oral tolerance.

View Article and Find Full Text PDF