71,769 results match your criteria: "Institute for Regenerative Medicine & Biotherapy IRMB[Affiliation]"

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

IP6K1 rewires LKB1 signaling to mediate hyperglycemic endothelial senescence.

Diabetes

January 2025

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.

View Article and Find Full Text PDF

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Bi-Hormonal Endocrine Cell Presence Within the Islets of Langerhans of the Human Pancreas Throughout Life.

Cells

January 2025

Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada.

Bi-hormonal islet endocrine cells have been proposed to represent an intermediate state of cellular transdifferentiation, enabling an increase in beta-cell mass in response to severe metabolic stress. Beta-cell plasticity and regenerative capacity are thought to decrease with age. We investigated the ontogeny of bi-hormonal islet endocrine cell populations throughout the human lifespan.

View Article and Find Full Text PDF

Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions.

View Article and Find Full Text PDF

Cisplatin, a chemotherapeutic drug, is known for causing gastrointestinal disorders and neuropathic pain, but its impact on visceral sensitivity is unclear. Monosodium glutamate (MSG) has been shown to improve gastrointestinal dysmotility and neuropathic pain induced by cisplatin in rats. This study aimed to determine if repeated cisplatin treatment alters visceral sensitivity and whether dietary MSG can prevent these changes.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).

View Article and Find Full Text PDF

Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.

View Article and Find Full Text PDF

Digital light processing printing of non-modified protein-only compositions.

Mater Today Bio

February 2025

Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.

View Article and Find Full Text PDF

Background: COVID-19 patients exhibit higher incidence of thrombosis in arteries and veins, including those in lungs. Vasa vasorum, which support large blood vessels, have shown involvement in these pathologic processes.

Methods: To further explore the extent of microvascular damage caused by COVID-19 infection, we examined resected main, right, or left pulmonary artery specimens from patients undergoing bilateral lung transplantation for COVID-19- or non-COVID-19-induced pulmonary fibrosis compared with organ donors by histologic and immunohistologic analyses.

View Article and Find Full Text PDF

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

Background: After two years of the COVID-19 pandemic, Malaysia began the transition to the endemic phase. students at higher education institutes are among those who were affected by the COVID-19 outbreak and deserve further attention. Hence, this study aimed to assess the knowledge, attitude, and practice (KAP) associated with COVID-19 among public university undergraduate students in Malaysia during the endemic phase.

View Article and Find Full Text PDF

METTL3-Mediated m6A Modification of ISG15 mRNA Regulates Doxorubicin-Induced Endothelial Cell Apoptosis.

J Cell Mol Med

January 2025

Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.

N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.

View Article and Find Full Text PDF

Divergent roles of mA in orchestrating brown and white adipocyte transcriptomes and systemic metabolism.

Nat Commun

January 2025

Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.

N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.

View Article and Find Full Text PDF

LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK.

Mol Metab

January 2025

Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:

Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo.

View Article and Find Full Text PDF

How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.

View Article and Find Full Text PDF

Evaluating ADHD medication trial representativeness: a Swedish population-based study comparing hypothetically trial-eligible and trial-ineligible individuals.

Lancet Psychiatry

January 2025

Developmental Evidence synthesis, Prediction, Implementation lab, Centre for Innovation in Mental Health, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Hampshire and Isle of Wight NHS Foundation Trust, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy.

Background: Randomised controlled trials (RCTs) evaluating ADHD medications often use strict eligibility criteria, potentially limiting generalisability to patients in real-world clinical settings. We aimed to identify the proportion of individuals with ADHD who would be ineligible for medication RCTs and evaluate differences in treatment patterns and clinical and functional outcomes between RCT-eligible and RCT-ineligible individuals.

Methods: We used multiple Swedish national registries to identify individuals with ADHD, aged at least 4 years at the age of diagnosis, initiating pharmacological treatment between Jan 1, 2007, and Dec 31, 2019, with follow-up up to Dec 31, 2020.

View Article and Find Full Text PDF

Biomimetic nanostructural materials based on placental amniotic membrane-derived nanofibers for self-healing and anti-adhesion during cesarean section.

Biomaterials

January 2025

Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511462, China. Electronic address:

Cesarean section (CS) is highly prevalent surgery among females. However, current absorbable anti-adhesion membranes used clinically can partially prevent postoperative adhesions but show limited efficacy in tissue regeneration, leaving post-cesarean women at risk for severe complications including cesarean scar pregnancy, placenta previa, and uterine rupture. Herein, we designed a fully amniotic membrane (AM)-derived biomimetic nanostructural materials (AM-BNMs) as an anti-adhesion barrier, and validated its therapeutic efficacy in a rat CS model.

View Article and Find Full Text PDF

Background: The Wound Care Collaborative Community (WCCC) assesses shortcomings and unmet needs in wound care by partnering with key stakeholders, such as the National Institutes of Health, the US Food and Drug Administration (FDA), industry leaders, and expert health care providers and researchers, to advance the study of wound healing. Through this work, the WCCC has identified a few key barriers to innovation in wound care. The WCCC aims to accelerate the development of science-based, patient-centered solutions and address public policy challenges related to ensuring patients receive early access to innovative treatment options.

View Article and Find Full Text PDF

Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing.

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Characterization of Key Lipid Components in the Cell Membrane of Freeze-Drying Resistant Strains Using Nontargeted Lipidomics.

J Agric Food Chem

January 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.

Lactic acid bacteria (LAB) are usually freeze-dried into powder for transportation and storage, with the bacterial membrane playing a crucial role in this process. However, different strains exhibit different levels of freeze-drying resistance in their cell membranes. In this study, () strains 1F20, K56, and J5, demonstrating survival rates of 59.

View Article and Find Full Text PDF