71,769 results match your criteria: "Institute for Regenerative Medicine & Biotherapy IRMB[Affiliation]"

Unlabelled: 3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues () and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research.

Purpose: 3D cell culture develops life sciences by mimicking the natural cellular environment.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

SiCLAT: simultaneous imaging of chromatin loops and active transcription in living cells.

Genome Biol

January 2025

State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.

We present SiCLAT, which introduces a dCas9-dCas13d cassette into the mouse genome. This model enables the stable expression of both dCas9 and dCas13 proteins in diverse cell populations, facilitating concurrent labeling of DNA and RNA across various cell types. Using SiCLAT, we accurately labeled chromatin loop anchor interactions and associated gene transcription during myogenic differentiation.

View Article and Find Full Text PDF

Distinct mechanisms control the specific synaptic functions of Neuroligin 1 and Neuroligin 2.

EMBO Rep

January 2025

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown.

View Article and Find Full Text PDF

In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program.

View Article and Find Full Text PDF

During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state.

View Article and Find Full Text PDF

Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium.

View Article and Find Full Text PDF

A tunable human intestinal organoid system achieves controlled balance between self-renewal and differentiation.

Nat Commun

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

A balance between stem cell self-renewal and differentiation is required to maintain concurrent proliferation and cellular diversification in organoids; however, this has proven difficult in homogeneous cultures devoid of in vivo spatial niche gradients for adult stem cell-derived organoids. In this study, we leverage a combination of small molecule pathway modulators to enhance the stemness of organoid stem cells, thereby amplifying their differentiation potential and subsequently increasing cellular diversity within human intestinal organoids without the need for artificial spatial or temporal signaling gradients. Moreover, we demonstrate that this balance between self-renewal and differentiation can be effectively and reversibly shifted from secretory cell differentiation to the enterocyte lineage with enhanced proliferation using BET inhibitors, or unidirectional differentiation towards specific intestinal cell types by manipulating in vivo niche signals such as Wnt, Notch, and BMP.

View Article and Find Full Text PDF

Gestational diabetes mellitus causes genome hyper-methylation of oocyte via increased EZH2.

Nat Commun

January 2025

College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.

Gestational diabetes mellitus (GDM), a common pregnancy disease, has long-term negative effects on offspring health. Epigenetic changes may have important contributions to that, but the underlying mechanisms are not well understood. Here, we report the influence of GDM on DNA methylation of offspring (GDF1) oocytes and the possible mechanisms.

View Article and Find Full Text PDF

Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.

View Article and Find Full Text PDF

The role of the immune system in regulating tissue stem cells remains poorly understood, as does the relationship between immune-mediated tissue damage and regeneration. Graft vs. host disease (GVHD) occurring after allogeneic bone marrow transplantation (allo-BMT) involves immune-mediated damage to the intestinal epithelium and its stem cell compartment.

View Article and Find Full Text PDF

Deficiency of Sox7 leads to congenital aortic stenosis via abnormal valve remodeling.

J Mol Cell Cardiol

December 2024

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:

Abnormal valve development is the most common congenital heart malformation. The transcription factor Sox7 plays a critical role in the development of vascular and cardiac septation. However, it remains unclear whether Sox7 is required for heart valve development.

View Article and Find Full Text PDF

Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues.

View Article and Find Full Text PDF

Single-Cell Profiling of Lineages and Cell Types in the Vertebrate Brain.

Methods Mol Biol

January 2025

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Article Synopsis
  • CRISPR-Cas tools have been enhanced for tracking cell lineages during development, allowing for detailed analysis at single-cell resolution.
  • scGESTALTv2 integrates CRISPR-Cas9 editing of a lineage barcode with single-cell RNA sequencing (scRNA-seq) to track cellular development.
  • This method is applied in zebrafish brains, enabling the identification of cellular relationships among thousands of brain cells and various cell types.
View Article and Find Full Text PDF

ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.

View Article and Find Full Text PDF

This study aimed to determine if local injection of CXCL12 reduces sphincter fibrosis, restores sphincter muscle content, vascularization, and innervation, and recruits progenitor cells in a rabbit model of anal sphincter injury and incontinence. Adult female rabbits were assigned to 3 groups: uninjured/no treatment (control), injured/treated (treated), and injured/no treatment (untreated) (n=4 each). Injured groups were anesthetized and a section of external anal sphincter was removed at the 9:00 o'clock position.

View Article and Find Full Text PDF

Unlabelled: Respiratory epithelial cells can survive direct infection by influenza viruses, and the long-term consequences of that infection have been characterized in a subset of proximal airway cell types. The impact on the cells that survive viral infection in the distal lung epithelia, however, is much less well-characterized. Utilizing a Cre-expressing influenza B virus (IBV) and a lox-stop-lox tdTomato reporter mouse model, we identified that alveolar type 2 (AT2) pneumocytes, a progenitor cell type in the distal lung, can survive viral infection.

View Article and Find Full Text PDF

Immunotherapy utilizes immune cells to target cancer and improves treatment outcomes with few side effects. Despite the effectiveness of immunotherapy, the limited availability of monocytes, which are essential for the differentiation of antigen-presenting cells, remains a major challenge. In this study, we developed a technique for inducing monocytes from hematopoietic stem and progenitor cells by using a serum-free (SF) medium supplemented with optimal concentrations of serum substitutes and cytokines.

View Article and Find Full Text PDF

To maintain and regenerate adult tissues after injury, division and differentiation of tissue-resident stem cells must be precisely regulated. It remains elusive which regulatory strategies prevent exhaustion or overgrowth of the stem cell pool, whether there is coordination between multiple mechanisms, and how to detect them from snapshots. In Drosophila testes, somatic stem cells transition to a state that licenses them to differentiate, but remain capable of returning to the niche and resuming cell division.

View Article and Find Full Text PDF

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Article Synopsis
  • Posttranslational modification (PTM) of the amyloid precursor protein (APP), particularly lactylation, is linked to the development of Alzheimer's disease (AD), but its specific role is still unclear.
  • Research showed reduced APP lactylation in AD patients and models, identifying lysine 612 as a key lactylation site, which affects APP processing and Aβ generation.
  • A lactyl-mimicking mutant enhanced APP trafficking and reduced cognitive decline by modifying APP interactions, suggesting that targeting APP lactylation may offer new therapeutic avenues for Alzheimer's disease.
View Article and Find Full Text PDF

The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.

View Article and Find Full Text PDF

Proposal for a non-adhesive single-cell culture technology for primary hepatocytes.

Cytotechnology

February 2025

Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan.

Unlabelled: Primary hepatocytes (PHs) are indispensable for studying liver function, drug screening, and regenerative medicine. However, freshly isolated PHs only survive for a few hours in non-adherent suspension culture. This study proposes treatment with PEG-GRGDS, a polymer-peptide conjugate comprising polyethylene glycol (PEG) and the pentapeptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS), to sustain the viability of dispersed single PHs under non-adherent conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Cervical radiculopathies are typically treated with nerve root injections, and this study introduces a new ultrasound-guided technique for better visualization and injection accuracy.
  • A 56-year-old patient with chronic C6 radiculopathy received treatment using this method, combining 5% dextrose and vitamin B12, which significantly improved their symptoms.
  • The new technique ensures precise needle placement and effective medication spread while minimizing risks and reducing the need for fluoroscopy, lowering radiation exposure and enhancing treatment outcomes.
View Article and Find Full Text PDF

Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the major stem cells of the bone marrow and are usually isolated from the peripheral blood. In the present study, we isolated these stem cells by an apheresis method from a donor who was administered granulocyte colony-stimulating factor (G-CSF). propagation of these stem cells showed a plastic-adherence property expressing CD73 and CD105 surface markers, which is a characteristic feature of MSCs.

View Article and Find Full Text PDF