71,769 results match your criteria: "Institute for Regenerative Medicine & Biotherapy (IRMB)[Affiliation]"

Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS.

Mol Ther

January 2025

Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address:

Autoreactive antibodies (AAB) are currently being investigated as causative or aggravating factors during post-COVID. In this study we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptors (ANSR) autoantibodies and neurological impairments.

View Article and Find Full Text PDF

Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.

View Article and Find Full Text PDF

Regeneration after ischemia requires to be promoted by (re)perfusion of the affected tissue, and, to date, there is no therapy that covers all needs. In treatment with mesenchymal stem cells (MSC), the secretome acts via paracrine mechanisms and has a positive influence on vascular regeneration via proangiogenic factors. A lack of standardization and the high complexity of vascular structures make it difficult to compare angiogenic readouts from different studies.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Chronic wounds and injuries remain a substantial healthcare challenge, with significant burdens on patient quality of life and healthcare resources. Mesenchymal stromal cells (MSCs) present an innovative approach to enhance tissue repair and regeneration in the context of wound healing. The intrinsic presence of MSCs in skin tissue, combined with their roles in wound repair, ease of isolation, broad secretory profile, and low immunogenicity, makes them especially promising for treating chronic wounds.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.

View Article and Find Full Text PDF

S6K2 in Focus: Signaling Pathways, Post-Translational Modifications, and Computational Analysis.

Int J Mol Sci

December 2024

Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK.

S6 Kinase 2 (S6K2) is a key regulator of cellular signaling and is crucial for cell growth, proliferation, and survival. This review is divided into two parts: the first focuses on the complex network of upstream effectors, downstream modulators, and post-translational modifications (PTMs) that regulate S6K2 activity. We emphasize the dynamic nature of S6K2 regulation, highlighting its critical role in cellular homeostasis and its potential as a therapeutic target in diseases like cancer.

View Article and Find Full Text PDF

Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.

View Article and Find Full Text PDF

Glaucoma treatment involves reducing the intraocular pressure (IOP), which can damage the optic nerve, to a normal range. Aqueous drainage devices may be used for treatment, and a variety of devices have been proposed. However, they have a non-variable and uniform inner diameter, which makes it difficult to accommodate the IOP fluctuations that occur after glaucoma surgery.

View Article and Find Full Text PDF

Low- and middle-income countries (LMICs) face a significant burden of cancer prevalence and incidence. However, the survival rates for patients with cancer in these regions are notably lower than those in high-income countries, primarily due to late diagnosis and limited access to advanced treatments. Chimeric antigen receptor (CAR) T-cell therapy has demonstrated promising outcomes in certain terminally ill patients with cancer, yet access to this treatment remains limited in LMICs, including Nepal.

View Article and Find Full Text PDF

Cirrhosis is a major cause of morbidity and mortality; however, there are no approved therapies except orthotopic liver transplantation. Preclinical studies showed that bone-marrow-derived macrophage injections reduce inflammation, resolve fibrosis and stimulate liver regeneration. In a multicenter, open-label, parallel-group, phase 2 randomized controlled trial ( ISRCTN10368050 ) in n = 51 adult patients with compensated cirrhosis and Model for End-Stage Liver Disease (MELD) score ≥10 and ≤17, we evaluated the efficacy of autologous monocyte-derived macrophage therapy (n = 27) compared to standard medical care (n = 24).

View Article and Find Full Text PDF

Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination.

Sci Rep

January 2025

Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.

Article Synopsis
  • Melanoma is a severe skin cancer that starts from melanocytes, and existing rodent models have limitations in mirroring human conditions.
  • Researchers have created a transgenic pig model that mimics human melanoma using somatic cell nuclear transfer (SCNT), enabling better study of the disease.
  • This new model allows for the investigation of melanoma development and response to treatments, providing a significant resource for advancing cancer research and drug testing.
View Article and Find Full Text PDF

Parkinson's disease is characterized by the presence of α-synuclein (α-syn) primarily containing Lewy bodies in neurons. Despite decades of extensive research on α-syn accumulation, its molecular mechanisms have remained largely unexplored. Recent studies by us and others have suggested that extracellular vesicles (EVs), especially exosomes, can mediate the release of α-syn from cells, and inhibiting this pathway could result in increased intracellular α-syn levels.

View Article and Find Full Text PDF

Clinimetric analysis of the numeric pain rating scale, patient-rated tennis elbow evaluation, and tennis elbow function scale in patients with lateral elbow tendinopathy.

Physiother Theory Pract

January 2025

Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain.

Background: Currently, there is conflicting clinimetric data on the patient-rated tennis elbow evaluation (PRTEE) and a paucity of evidence regarding the reliability, validity, and responsiveness of the numeric pain rating scale (NPRS), and tennis elbow function scale (TEFS) in patients with lateral elbow tendinopathy.

Objective: Perform a comprehensive clinimetric analysis of the NPRS, PRTEE, and TEFS in a sample of patients ( = 143) with lateral elbow tendinopathy.

Methods: Establish the reliability, construct validity, responsiveness, meaningful clinically important difference (MCID), and minimal detectable change (MDC) values for the NPRS, PRTEE, and TEFS at the 3-month follow-up.

View Article and Find Full Text PDF

High fructose levels inhibit the proliferation of cardiomyocytes via the Notch1 signaling pathway.

Cell Signal

January 2025

Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325038, Zhejiang, China; Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:

Fructose, as a natural and simple sugar, is not significantly harmful to the human body when consumed in moderation and can provide energy for the body. High-fructose diets have been linked to an increased risk of a range of metabolic disorders, including hypertriglyceridemia, hypertension, and diabetes mellitus. These conditions are known to be associated with an elevated risk of developing cardiometabolic diseases.

View Article and Find Full Text PDF

Clinical impact of PTEN rs701848 as a predictive marker for breast cancer.

Clin Biochem

January 2025

Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, P.O. 12622, Giza, Egypt. Electronic address:

Background: The incidence of Breast cancer (BC) is currently augmented and it has become the most common malignant cancer in females. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene as a result of blocking the phosphorylation of PIP3 in PI3K pathway.

Methods: The computational bioinformatics tools were performed to determine the link between PTEN rs701848T/C genetic variants and breast cancer progression.

View Article and Find Full Text PDF

Tissue Determinants of Antiviral Immunity in the Liver.

Z Gastroenterol

January 2025

Institute of Molecular Immunology, School of Life Science, Technical University of Munich, Munich, Germany.

The liver is an organ bearing important metabolic and immune functions. Hepatocytes are the main metabolically active cells of the liver and are the target of infection by hepatotropic viruses. Virus-specific CD8 T cells are essential for the control of hepatocyte infection with hepatotropic viruses but may be subject to local regulation of their effector function.

View Article and Find Full Text PDF

Biofunctionalisation of porous additively manufactured magnesium-based alloys for Orthopaedic applications: A review.

Biomater Adv

January 2025

School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland. Electronic address:

Magnesium (Mg) alloys have gained significant attention as a desirable choice of biodegradable implant for use in bone repair applications, largely owing to their unique material properties. More recently, Mg and Mg-based alloys have been used as load-bearing metallic scaffolds for bone tissue engineering applications, offering promising opportunities in the field. The mechanical properties and relative density of Mg-based alloys closely approximate those of natural human bone tissue, thereby mitigating the risk of stress-shielding effects.

View Article and Find Full Text PDF

Biological and environmental degradation of two-dimensional materials.

Nat Rev Chem

January 2025

CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France.

As the use of two-dimensional materials continues to grow, so too does the need to understand the environmental and biological impact of such materials. Degradation is a critical step in the life cycle of any material, but the majority of such knowledge is obtained from test tube and in vitro studies. Therefore, there remains a gap in understanding the degradability of two-dimensional materials in complex systems (in vivo) and in different ambient environments.

View Article and Find Full Text PDF

Spatial transcriptomic characterization of a Carnegie stage 7 human embryo.

Nat Cell Biol

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.

Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo.

View Article and Find Full Text PDF

Vinculin haploinsufficiency impairs integrin-mediated costamere remodeling on stiffer microenvironments.

J Mol Cell Cardiol

January 2025

Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:

Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.

View Article and Find Full Text PDF

Capture primed pluripotency in guinea pig.

Stem Cell Reports

December 2024

Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China. Electronic address:

Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF